{"title":"Revisiting the Briggs Ancient DNA Damage Model: A Fast Maximum Likelihood Method to Estimate Post-Mortem Damage","authors":"Lei Zhao, Rasmus Amund Henriksen, Abigail Ramsøe, Rasmus Nielsen, Thorfinn Sand Korneliussen","doi":"10.1111/1755-0998.14029","DOIUrl":null,"url":null,"abstract":"<p>One essential initial step in the analysis of ancient DNA is to authenticate that the DNA sequencing reads are actually from ancient DNA. This is done by assessing if the reads exhibit typical characteristics of post-mortem damage (PMD), including cytosine deamination and nicks. We present a novel statistical method implemented in a fast multithreaded programme, ngsBriggs that enables rapid quantification of PMD by estimation of the Briggs ancient damage model parameters (Briggs parameters). Using a multinomial model with maximum likelihood fit, ngsBriggs accurately estimates the parameters of the Briggs model, quantifying the PMD signal from single and double-stranded DNA regions. We extend the original Briggs model to capture PMD signals for contemporary sequencing platforms and show that ngsBriggs accurately estimates the Briggs parameters across a variety of contamination levels. Classification of reads into ancient or modern reads, for the purpose of decontamination, is significantly more accurate using ngsBriggs than using other methods available. Furthermore, ngsBriggs is substantially faster than other state-of-the-art methods. ngsBriggs offers a practical and accurate method for researchers seeking to authenticate ancient DNA and improve the quality of their data.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"25 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One essential initial step in the analysis of ancient DNA is to authenticate that the DNA sequencing reads are actually from ancient DNA. This is done by assessing if the reads exhibit typical characteristics of post-mortem damage (PMD), including cytosine deamination and nicks. We present a novel statistical method implemented in a fast multithreaded programme, ngsBriggs that enables rapid quantification of PMD by estimation of the Briggs ancient damage model parameters (Briggs parameters). Using a multinomial model with maximum likelihood fit, ngsBriggs accurately estimates the parameters of the Briggs model, quantifying the PMD signal from single and double-stranded DNA regions. We extend the original Briggs model to capture PMD signals for contemporary sequencing platforms and show that ngsBriggs accurately estimates the Briggs parameters across a variety of contamination levels. Classification of reads into ancient or modern reads, for the purpose of decontamination, is significantly more accurate using ngsBriggs than using other methods available. Furthermore, ngsBriggs is substantially faster than other state-of-the-art methods. ngsBriggs offers a practical and accurate method for researchers seeking to authenticate ancient DNA and improve the quality of their data.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.