Lennart Riemann, Leonie M. Weskamm, Leonie Mayer, Ivan Odak, Swantje Hammerschmidt, Inga Sandrock, Michaela Friedrichsen, Inga Ravens, Janina Fuss, Gesine Hansen, Marylyn M. Addo, Reinhold Förster
{"title":"Blood transcriptome profiling reveals distinct gene networks induced by mRNA vaccination against COVID-19","authors":"Lennart Riemann, Leonie M. Weskamm, Leonie Mayer, Ivan Odak, Swantje Hammerschmidt, Inga Sandrock, Michaela Friedrichsen, Inga Ravens, Janina Fuss, Gesine Hansen, Marylyn M. Addo, Reinhold Förster","doi":"10.1002/eji.202451236","DOIUrl":null,"url":null,"abstract":"<p>Messenger RNA (mRNA) vaccines represent a new class of vaccines that has been shown to be highly effective during the COVID-19 pandemic and that holds great potential for other preventative and therapeutic applications. While it is known that the transcriptional activity of various genes is altered following mRNA vaccination, identifying and studying gene networks could reveal important scientific insights that might inform future vaccine designs. In this study, we conducted an in-depth weighted gene correlation network analysis of the blood transcriptome before and 24 h after the second and third vaccination with licensed mRNA vaccines against COVID-19 in humans, following a prime vaccination with either mRNA or ChAdOx1 vaccines. Utilizing this unsupervised gene network analysis approach, we identified distinct modular networks of co-varying genes characterized by either an expressional up- or downregulation in response to vaccination. Downregulated networks were associated with cell metabolic processes and regulation of transcription factors, while upregulated networks were associated with myeloid differentiation, antigen presentation, and antiviral, interferon-driven pathways. Within this interferon-associated network, we identified highly connected hub genes such as <i>STAT2</i> and <i>RIGI</i> and associated upstream transcription factors, potentially playing important regulatory roles in the vaccine-induced immune response. The expression profile of this network significantly correlated with S1-specific IgG levels at the follow-up visit in vaccinated individuals. Those findings could be corroborated in a second, independent cohort of mRNA vaccine recipients. Collectively, results from this modular gene network analysis enhance the understanding of mRNA vaccines from a systems immunology perspective. Influencing specific gene networks could lead to optimized vaccines that elicit augmented vaccine responses.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"54 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451236","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Messenger RNA (mRNA) vaccines represent a new class of vaccines that has been shown to be highly effective during the COVID-19 pandemic and that holds great potential for other preventative and therapeutic applications. While it is known that the transcriptional activity of various genes is altered following mRNA vaccination, identifying and studying gene networks could reveal important scientific insights that might inform future vaccine designs. In this study, we conducted an in-depth weighted gene correlation network analysis of the blood transcriptome before and 24 h after the second and third vaccination with licensed mRNA vaccines against COVID-19 in humans, following a prime vaccination with either mRNA or ChAdOx1 vaccines. Utilizing this unsupervised gene network analysis approach, we identified distinct modular networks of co-varying genes characterized by either an expressional up- or downregulation in response to vaccination. Downregulated networks were associated with cell metabolic processes and regulation of transcription factors, while upregulated networks were associated with myeloid differentiation, antigen presentation, and antiviral, interferon-driven pathways. Within this interferon-associated network, we identified highly connected hub genes such as STAT2 and RIGI and associated upstream transcription factors, potentially playing important regulatory roles in the vaccine-induced immune response. The expression profile of this network significantly correlated with S1-specific IgG levels at the follow-up visit in vaccinated individuals. Those findings could be corroborated in a second, independent cohort of mRNA vaccine recipients. Collectively, results from this modular gene network analysis enhance the understanding of mRNA vaccines from a systems immunology perspective. Influencing specific gene networks could lead to optimized vaccines that elicit augmented vaccine responses.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.