Building Confidence in Physiologically Based Pharmacokinetic Modeling of CYP3A Induction Mediated by Rifampin: An Industry Perspective.

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Clinical Pharmacology & Therapeutics Pub Date : 2025-02-01 Epub Date: 2024-10-18 DOI:10.1002/cpt.3477
Micaela B Reddy, Tamara D Cabalu, Loeckie de Zwart, Diane Ramsden, Martin E Dowty, Kunal S Taskar, Justine Badée, Jayaprakasam Bolleddula, Laurent Boulu, Qiang Fu, Masakatsu Kotsuma, Alix F Leblanc, Gareth Lewis, Guiqing Liang, Neil Parrott, Venkatesh Pilla Reddy, Chandra Prakash, Kushal Shah, Kenichi Umehara, Dwaipayan Mukherjee, Jessica Rehmel, Niresh Hariparsad
{"title":"Building Confidence in Physiologically Based Pharmacokinetic Modeling of CYP3A Induction Mediated by Rifampin: An Industry Perspective.","authors":"Micaela B Reddy, Tamara D Cabalu, Loeckie de Zwart, Diane Ramsden, Martin E Dowty, Kunal S Taskar, Justine Badée, Jayaprakasam Bolleddula, Laurent Boulu, Qiang Fu, Masakatsu Kotsuma, Alix F Leblanc, Gareth Lewis, Guiqing Liang, Neil Parrott, Venkatesh Pilla Reddy, Chandra Prakash, Kushal Shah, Kenichi Umehara, Dwaipayan Mukherjee, Jessica Rehmel, Niresh Hariparsad","doi":"10.1002/cpt.3477","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, f<sub>m,CYP3A4</sub>, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of f<sub>m,CYP3A4</sub> (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":"403-420"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, fm,CYP3A4, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of fm,CYP3A4 (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.

在利福平介导的 CYP3A 诱导的生理药代动力学模型中建立信心:行业视角。
基于生理学的药代动力学(PBPK)建模为预测诱导药物间相互作用(DDI)提供了一种可行的方法,如果预测结果有足够的可信度,就有可能简化或减少临床试验的负担。在目前的研究中,我们利用公开的 PBPK 模型(通常是在强抑制剂 DDI 研究后利用优化工作流程开发的,以获得对 CYP3A4 代谢部分 fm,CYP3A4 和肠道代谢后可利用部分 Fg 的信心)评估了利福平(一种表征明确的强 CYP3A4 诱导剂)对 20 种 CYP3A 探针的影响预测能力。这些底物的 fm,CYP3A4(0.086-1.0)、Fg(0.11-1.0)和肝脏利用率(0.09-0.96)范围不等。对于非 P-gp 底物或虽为 P-gp 底物但具有高渗透性的化合物,预测结果通常最为准确。本文介绍了三个具有挑战性的 DDI 预测案例研究(即对 eliglustat、tofacitinib 和 ribociclib 的预测)。在进行参数敏感性分析以了解影响 DDI 模拟的关键参数的同时,还应考虑替代模型结构,例如,对于渗透性较低的 P-gp 底物来说,机理吸收模型而非一阶吸收模型可能更为合适。应考虑将利福平可能影响 CYP3A 底物的任何相关机制(如诱导其他酶或 P-gp)纳入模型。研究表明,PBPK 模型是预测利福平与 CYP3A 底物诱导 DDI 的有效工具,其机理复杂程度有限,从而增强了对利福平模型的信心。虽然这项分析侧重于利福平,但所学到的知识可能适用于其他诱导剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信