Modeling High Concentration Bisalt-in-Sulfolane Electrolytes and the Observation of Ligand-Bridged Cation-Pair Complexes.

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-10-31 Epub Date: 2024-10-16 DOI:10.1021/acs.jpcb.4c04644
Srimayee Mukherji, Disha Brahma, Sundaram Balasubramanian
{"title":"Modeling High Concentration Bisalt-in-Sulfolane Electrolytes and the Observation of Ligand-Bridged Cation-Pair Complexes.","authors":"Srimayee Mukherji, Disha Brahma, Sundaram Balasubramanian","doi":"10.1021/acs.jpcb.4c04644","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the abundance of sodium over lithium in Earth's crust and the copious amounts of expensive lithium salt required to make Li-ion high-concentration electrolytes (HCEs), studies of HCEs made from sodium salts remain sparse. A comparative molecular-level study of Li- and Na-ion HCEs and mixed cation or bisalt HCEs in an organic solvent is missing. To fill this gap, we studied model HCEs of pure and mixed Li and Na salts of bis(fluorosulfonyl)amide (FSI) in sulfolane using a confluence of classical molecular dynamics (MD), ab initio MD (AIMD) simulations, and quantum chemical cluster calculations. While Li-ion HCEs display transport properties superior to those of Na-ion HCEs, the latter's performance can be considerably improved by replacing even 25% of Na-ions with Li-ions. While the effects of doping are largely systemic, a larger sensitivity of the identity of solvation shells of Li-ions to the Li-content of the HCE is observed; in contrast, those of Na-ions are more oblivious to it. Fascinating ligand-bridged, short-distance cation pairs observed in the classical MD simulations are confirmed using density functional theory-based AIMD simulations. Quantum chemical calculations in the gas phase reveal the thermodynamic stability of such cation pairs complexed with multiple anions and solvent molecules.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"10675-10687"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04644","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the abundance of sodium over lithium in Earth's crust and the copious amounts of expensive lithium salt required to make Li-ion high-concentration electrolytes (HCEs), studies of HCEs made from sodium salts remain sparse. A comparative molecular-level study of Li- and Na-ion HCEs and mixed cation or bisalt HCEs in an organic solvent is missing. To fill this gap, we studied model HCEs of pure and mixed Li and Na salts of bis(fluorosulfonyl)amide (FSI) in sulfolane using a confluence of classical molecular dynamics (MD), ab initio MD (AIMD) simulations, and quantum chemical cluster calculations. While Li-ion HCEs display transport properties superior to those of Na-ion HCEs, the latter's performance can be considerably improved by replacing even 25% of Na-ions with Li-ions. While the effects of doping are largely systemic, a larger sensitivity of the identity of solvation shells of Li-ions to the Li-content of the HCE is observed; in contrast, those of Na-ions are more oblivious to it. Fascinating ligand-bridged, short-distance cation pairs observed in the classical MD simulations are confirmed using density functional theory-based AIMD simulations. Quantum chemical calculations in the gas phase reveal the thermodynamic stability of such cation pairs complexed with multiple anions and solvent molecules.

高浓度硫醇掺杂比萨尔特电解质的建模和配体桥接阳离子对复合物的观察。
尽管钠在地壳中的含量高于锂,而且制造锂离子高浓度电解质(HCE)需要大量昂贵的锂盐,但对钠盐制造的 HCE 的研究仍然很少。对有机溶剂中的锂离子和钠离子高浓度电解质以及混合阳离子或双盐高浓度电解质的分子水平比较研究仍然缺失。为了填补这一空白,我们采用经典分子动力学 (MD)、ab initio MD (AIMD) 模拟和量子化学簇计算相结合的方法,研究了双氟磺酰基酰胺 (FSI) 的纯锂盐、混合锂盐和 Na 盐在磺烷中的 HCE 模型。虽然锂离子 HCE 显示出优于 Na 离子 HCE 的传输特性,但即使用锂离子取代 25% 的 Na 离子,后者的性能也能得到显著改善。虽然掺杂的影响在很大程度上是系统性的,但可以观察到锂离子的溶解壳特性对 HCE 中锂离子含量的敏感性更高;相比之下,Na 离子的溶解壳特性对锂离子含量的敏感性更低。基于密度泛函理论的 AIMD 模拟证实了经典 MD 模拟中观察到的迷人配体桥接短距离阳离子对。气相量子化学计算揭示了这种阳离子对与多种阴离子和溶剂分子复合的热力学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信