MMP-2 Responsive Gold Nanorods Loaded with HSP-70 siRNA for Enhanced Photothermal Tumor Therapy.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Ran Sun, Yaoqi Wang, Qi Sun, Yan Su, Jie Zhang, Danni Liu, Ran Huo, Yang Tian, Myagmarsuren Baldan, Shuang Zhang, Chunying Cui
{"title":"MMP-2 Responsive Gold Nanorods Loaded with HSP-70 siRNA for Enhanced Photothermal Tumor Therapy.","authors":"Ran Sun, Yaoqi Wang, Qi Sun, Yan Su, Jie Zhang, Danni Liu, Ran Huo, Yang Tian, Myagmarsuren Baldan, Shuang Zhang, Chunying Cui","doi":"10.1021/acs.molpharmaceut.4c00188","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanorods (Au NRs) are a valuable photothermal nanomaterial for tumor therapy. However, when treated with Au NRs for photothermal therapy, the expression of heat shock proteins in tumors will increase, which will induce heat resistance in tumor cells and reduce the photothermal therapeutic effect of Au NRs. By RNA interference, the expression of heat shock proteins would be effectively inhibited to improve the efficasy of tumor photothermal therapy. However, deep and noninvasive tissue penetration remains a great obstacle to applying siRNA successfully. Thus, the nanoplatform AGC/HSP-70 siRNA was designed for enhanced photothermal tumor therapy by RNA interference. In the AGC/HSP-70 siRNA complex, the Au-S bond modified the matrix metalloproteinase-2 (MMP-2)-sensitive peptide GPLGLAG on the surface of gold nanorods. Moreover, the natural basic polysaccharide (chitosan) was reacted with the peptide by an amide bond for delivering heat shock protein 70 silencing siRNA (HSP-70 siRNA). Modifying the MMP-2-sensitive linker could cause more Au NRs to accumulate in tumors to exert a photothermal effect and promote the penetration of HSP-70 siRNA and chitosan complexes into deep tumor tissues. <i>In vitro</i> experiments indicated that the enzymolysis of the MMP-2-sensitive linker for AGC/HSP-70 siRNA could promote the cellular uptake and perinuclear distribution of HSP-70 siRNA in tumor cells, which may be due to the smaller size and positive electricity of the complexes. All of these results ensured the efficient gene silencing effect of HSP-70 siRNA to enhance the photothermal therapeutic effect of Au NRs in tumor tissues, as demonstrated by the gene silencing and cellular apoptotic experiments. <i>In vivo</i> experiments further proved that the AGC/HSP-70 siRNA nanoplatform efficiently improved the photothermal effect of Au NRs. In summary, this work proved that AGC/HSP-70 siRNA is a promising drug delivery strategy for enhancing the photothermal therapy of tumors by regulating the photothermal sensitivity of deep tumor cells as well as retaining more Au NRs in tumor tissues, and also provides a novel strategy for tumor photothermal therapy.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00188","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanorods (Au NRs) are a valuable photothermal nanomaterial for tumor therapy. However, when treated with Au NRs for photothermal therapy, the expression of heat shock proteins in tumors will increase, which will induce heat resistance in tumor cells and reduce the photothermal therapeutic effect of Au NRs. By RNA interference, the expression of heat shock proteins would be effectively inhibited to improve the efficasy of tumor photothermal therapy. However, deep and noninvasive tissue penetration remains a great obstacle to applying siRNA successfully. Thus, the nanoplatform AGC/HSP-70 siRNA was designed for enhanced photothermal tumor therapy by RNA interference. In the AGC/HSP-70 siRNA complex, the Au-S bond modified the matrix metalloproteinase-2 (MMP-2)-sensitive peptide GPLGLAG on the surface of gold nanorods. Moreover, the natural basic polysaccharide (chitosan) was reacted with the peptide by an amide bond for delivering heat shock protein 70 silencing siRNA (HSP-70 siRNA). Modifying the MMP-2-sensitive linker could cause more Au NRs to accumulate in tumors to exert a photothermal effect and promote the penetration of HSP-70 siRNA and chitosan complexes into deep tumor tissues. In vitro experiments indicated that the enzymolysis of the MMP-2-sensitive linker for AGC/HSP-70 siRNA could promote the cellular uptake and perinuclear distribution of HSP-70 siRNA in tumor cells, which may be due to the smaller size and positive electricity of the complexes. All of these results ensured the efficient gene silencing effect of HSP-70 siRNA to enhance the photothermal therapeutic effect of Au NRs in tumor tissues, as demonstrated by the gene silencing and cellular apoptotic experiments. In vivo experiments further proved that the AGC/HSP-70 siRNA nanoplatform efficiently improved the photothermal effect of Au NRs. In summary, this work proved that AGC/HSP-70 siRNA is a promising drug delivery strategy for enhancing the photothermal therapy of tumors by regulating the photothermal sensitivity of deep tumor cells as well as retaining more Au NRs in tumor tissues, and also provides a novel strategy for tumor photothermal therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信