Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2024-11-05 Epub Date: 2024-10-21 DOI:10.1021/acs.biochem.4c00480
Antonio Del Rio Flores, Chaitan Khosla
{"title":"Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†.","authors":"Antonio Del Rio Flores, Chaitan Khosla","doi":"10.1021/acs.biochem.4c00480","DOIUrl":null,"url":null,"abstract":"<p><p>Some species of the <i>Nocardia</i> genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an <i>O</i>-linked disaccharide composed of 3-α-epimycarose and 2-<i>O</i>-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2868-2877"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00480","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Some species of the Nocardia genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an O-linked disaccharide composed of 3-α-epimycarose and 2-O-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.

参与诺卡氏菌相关多酮†生物合成的黄素依赖性单加氧酶的特征。
诺卡氏菌属的一些物种拥有一个高度保守的生物合成基因簇,被命名为诺卡氏菌相关多酮(NOCAP)合成酶,可产生一种独特的糖脂天然产物。NOCAP 糖脂由一个完全取代的苯甲醛头和一个多官能团烷基尾以及一个由 3-α-epimycarose 和 2-O-methyl-α-rhamnose 组成的 O 键双糖组成。二糖单位的结合需要经过一个关键步骤,即由黄素单加氧酶 NocapM 进行羟化。在本研究中,我们利用生化、光谱和动力学分析来探索 NocapM 的底物范围。我们的研究结果表明,NocapM 可催化多种芳香族底物的羟基化,尽管观察到的 NADPH 氧化与底物羟基化之间的耦合因底物不同而有很大差异。我们对 NocapM 进行的深入生化鉴定为今后对这种酶进行机理研究以及将其用作实用生物催化剂奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信