{"title":"An advanced quantum support vector machine for power quality disturbance detection and identification","authors":"Qing-Le Wang, Yu Jin, Xin-Hao Li, Yue Li, Yuan-Cheng Li, Ke-Jia Zhang, Hao Liu, Long Cheng","doi":"10.1140/epjqt/s40507-024-00283-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of <span>\\(O(N^{2} \\log (N))\\)</span>, superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00283-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00283-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of \(O(N^{2} \log (N))\), superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.