Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Chaoyong Wang, Qi Jia, Qian Zhang
{"title":"Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion","authors":"Chaoyong Wang,&nbsp;Qi Jia,&nbsp;Qian Zhang","doi":"10.1007/s10440-024-00696-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider Cauchy problem for the 2D incompressible Keller-Segel-Navier-Stokes equations with the fractional diffusion </p><div><div><span> $$\\begin{aligned} \\left \\{ \\begin{aligned} &amp;\\partial _{t}n+u\\cdot \\nabla n-\\Delta n=-\\nabla \\cdot (n\\nabla c)- n^{3}, \\\\ &amp;\\partial _{t}c+u\\cdot \\nabla c-\\Delta c=-c+n, \\\\ &amp;\\partial _{t}u+u\\cdot \\nabla u+\\wedge ^{2\\alpha }u+\\nabla P=-n\\nabla \\phi , \\end{aligned} \\right . \\end{aligned}$$ </span></div></div><p> where <span>\\(\\wedge :=(-\\Delta )^{\\frac{1}{2}}\\)</span> and <span>\\(\\alpha \\in [\\frac{1}{2},1]\\)</span>. We get the global well-posedness for the above system with the rough initial data by a new priori estimate of the solutions.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00696-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider Cauchy problem for the 2D incompressible Keller-Segel-Navier-Stokes equations with the fractional diffusion

$$\begin{aligned} \left \{ \begin{aligned} &\partial _{t}n+u\cdot \nabla n-\Delta n=-\nabla \cdot (n\nabla c)- n^{3}, \\ &\partial _{t}c+u\cdot \nabla c-\Delta c=-c+n, \\ &\partial _{t}u+u\cdot \nabla u+\wedge ^{2\alpha }u+\nabla P=-n\nabla \phi , \end{aligned} \right . \end{aligned}$$

where \(\wedge :=(-\Delta )^{\frac{1}{2}}\) and \(\alpha \in [\frac{1}{2},1]\). We get the global well-posedness for the above system with the rough initial data by a new priori estimate of the solutions.

具有分数扩散的二维凯勒-西格尔-纳维尔-斯托克斯系统的全局良好假设性
在本文中,我们考虑了二维不可压缩 Keller-Segel-Navier-Stokes 方程的 Cauchy 问题,该方程具有分数扩散 $$\begin{aligned}\partial _{t}n+u\cdot \nabla n-\Delta n=-\nabla \cdot (n\nabla c)- n^{3},\ &;\partial _{t}c+u\cdot \nabla c-\Delta c=-c+n, (partial _{t}u+u\cdot \nabla u+\wedge ^{2\alpha }u+\nabla P=-n\nabla \phi , (end{aligned})。\right .\end{aligned}$$ 其中 (wedge :=(-\Delta )^{frac{1}{2}}\) 和 (alpha in [\frac{1}{2},1]\).通过对解的先验估计,我们得到了上述系统在粗糙初始数据下的全局最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信