Amit Devra, Niklas J. Glaser, Dennis Huber, Steffen J. Glaser
{"title":"Wigner state and process tomography on near-term quantum devices","authors":"Amit Devra, Niklas J. Glaser, Dennis Huber, Steffen J. Glaser","doi":"10.1007/s11128-024-04550-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present an experimental scanning-based tomography approach for near-term quantum devices. The underlying method has previously been introduced in an ensemble-based NMR setting. Here we provide a tutorial-style explanation along with suitable software tools to guide experimentalists in its adaptation to near-term pure-state quantum devices. The approach is based on a Wigner-type representation of quantum states and operators. These representations provide a rich visualization of quantum operators using shapes assembled from a linear combination of spherical harmonics. These shapes (called droplets in the following) can be experimentally tomographed by measuring the expectation values of rotated axial tensor operators. We present an experimental framework for implementing the scanning-based tomography technique for circuit-based quantum computers and showcase results from IBM quantum experience. We also present a method for estimating the density and process matrices from experimentally tomographed Wigner functions (droplets). This tomography approach can be directly implemented using the Python-based software package <span>DROPStomo</span>.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04550-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04550-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present an experimental scanning-based tomography approach for near-term quantum devices. The underlying method has previously been introduced in an ensemble-based NMR setting. Here we provide a tutorial-style explanation along with suitable software tools to guide experimentalists in its adaptation to near-term pure-state quantum devices. The approach is based on a Wigner-type representation of quantum states and operators. These representations provide a rich visualization of quantum operators using shapes assembled from a linear combination of spherical harmonics. These shapes (called droplets in the following) can be experimentally tomographed by measuring the expectation values of rotated axial tensor operators. We present an experimental framework for implementing the scanning-based tomography technique for circuit-based quantum computers and showcase results from IBM quantum experience. We also present a method for estimating the density and process matrices from experimentally tomographed Wigner functions (droplets). This tomography approach can be directly implemented using the Python-based software package DROPStomo.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.