Robust and efficient reranking in crystal structure prediction: a data driven method for real-life molecules†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-10-04 DOI:10.1039/D4CE00752B
Andrea Anelli, Hanno Dietrich, Philipp Ectors, Frank Stowasser, Tristan Bereau, Marcus Neumann and Joost van den Ende
{"title":"Robust and efficient reranking in crystal structure prediction: a data driven method for real-life molecules†","authors":"Andrea Anelli, Hanno Dietrich, Philipp Ectors, Frank Stowasser, Tristan Bereau, Marcus Neumann and Joost van den Ende","doi":"10.1039/D4CE00752B","DOIUrl":null,"url":null,"abstract":"<p >We accelerate a key step in crystal structure prediction (CSP) using machine learning and report its robustness on a wide array of pharmaceutical molecules. The speedup achieved by our scheme allows for a scale-up in both the number of candidate drug molecules studied and the level of theory employed in their treatment, paving the way for tackling more complex crystal energy landscapes.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 41","pages":" 5845-5849"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce00752b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00752b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We accelerate a key step in crystal structure prediction (CSP) using machine learning and report its robustness on a wide array of pharmaceutical molecules. The speedup achieved by our scheme allows for a scale-up in both the number of candidate drug molecules studied and the level of theory employed in their treatment, paving the way for tackling more complex crystal energy landscapes.

Abstract Image

晶体结构预测中稳健高效的重新排序:针对现实生活中分子的数据驱动方法†。
我们利用机器学习加速了晶体结构预测(CSP)的一个关键步骤,并报告了它在一系列药物分子上的稳健性。我们的方案所实现的提速使我们可以扩大所研究的候选药物分子的数量以及处理这些分子时所采用的理论水平,从而为处理更复杂的晶体能谱铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信