Xiang Liu, Jiawei He, Keyu Lin, Xingyue Wang and Hua Cao
{"title":"State-of-the-art strategies for Lewis acid-catalyzed strain-release cycloadditions of bicyclo[1.1.0]butanes (BCBs)","authors":"Xiang Liu, Jiawei He, Keyu Lin, Xingyue Wang and Hua Cao","doi":"10.1039/D4QO01741B","DOIUrl":null,"url":null,"abstract":"<p >Due to their low activation energy barriers, small strained carbocyclic systems have always been fascinating building blocks in organic chemistry. Among them, BCBs, as the smallest bicyclic carbocycles, exhibit a molecular structure, bond angles, and orbital hybridization significantly different from those of strain-free hydrocarbons, resulting in unique reactivity. In recent years, Lewis acid-catalyzed strain-release cycloaddition reactions have made BCBs powerful synthetic tools, utilized in various laboratories to expand into other ring systems. This review primarily focuses on the latest developments in Lewis acid-catalyzed strain-release cycloaddition reactions of BCBs, highlighting the applications and limitations of this catalytic system in different types of cycloaddition reactions, providing professionals and non-professionals in the field with valuable insights and new inspiration.</p>","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":" 23","pages":" 6942-6957"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qo/d4qo01741b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their low activation energy barriers, small strained carbocyclic systems have always been fascinating building blocks in organic chemistry. Among them, BCBs, as the smallest bicyclic carbocycles, exhibit a molecular structure, bond angles, and orbital hybridization significantly different from those of strain-free hydrocarbons, resulting in unique reactivity. In recent years, Lewis acid-catalyzed strain-release cycloaddition reactions have made BCBs powerful synthetic tools, utilized in various laboratories to expand into other ring systems. This review primarily focuses on the latest developments in Lewis acid-catalyzed strain-release cycloaddition reactions of BCBs, highlighting the applications and limitations of this catalytic system in different types of cycloaddition reactions, providing professionals and non-professionals in the field with valuable insights and new inspiration.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.