{"title":"Leveraging language model for advanced multiproperty molecular optimization via prompt engineering","authors":"Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun Jiang, Yafeng Deng, Dongsheng Cao, Chang-Yu Hsieh, Tingjun Hou","doi":"10.1038/s42256-024-00916-5","DOIUrl":null,"url":null,"abstract":"<p>Optimizing a candidate molecule’s physiochemical and functional properties has been a critical task in drug and material design. Although the non-trivial task of balancing multiple (potentially conflicting) optimization objectives is considered ideal for artificial intelligence, several technical challenges such as the scarcity of multiproperty-labelled training data have hindered the development of a satisfactory AI solution for a long time. Prompt-MolOpt is a tool for molecular optimization; it makes use of prompt-based embeddings, as used in large language models, to improve the transformer’s ability to optimize molecules for specific property adjustments. Notably, Prompt-MolOpt excels in working with limited multiproperty data (even under the zero-shot setting) by effectively generalizing causal relationships learned from single-property datasets. In comparative evaluations against established models such as JTNN, hierG2G and Modof, Prompt-MolOpt achieves over a 15% relative improvement in multiproperty optimization success rates compared with the leading Modof model. Furthermore, a variant of Prompt-MolOpt, named Prompt-MolOpt<sup>P</sup>, can preserve the pharmacophores or any user-specified fragments under the structural transformation, further broadening its application scope. By constructing tailored optimization datasets, with the protocol introduced in this work, Prompt-MolOpt steers molecular optimization towards domain-relevant chemical spaces, enhancing the quality of the optimized molecules. Real-world tests, such as those involving blood–brain barrier permeability optimization, underscore its practical relevance. Prompt-MolOpt offers a versatile approach for multiproperty and multi-site molecular optimizations, suggesting its potential utility in chemistry research and drug and material discovery.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"224 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00916-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing a candidate molecule’s physiochemical and functional properties has been a critical task in drug and material design. Although the non-trivial task of balancing multiple (potentially conflicting) optimization objectives is considered ideal for artificial intelligence, several technical challenges such as the scarcity of multiproperty-labelled training data have hindered the development of a satisfactory AI solution for a long time. Prompt-MolOpt is a tool for molecular optimization; it makes use of prompt-based embeddings, as used in large language models, to improve the transformer’s ability to optimize molecules for specific property adjustments. Notably, Prompt-MolOpt excels in working with limited multiproperty data (even under the zero-shot setting) by effectively generalizing causal relationships learned from single-property datasets. In comparative evaluations against established models such as JTNN, hierG2G and Modof, Prompt-MolOpt achieves over a 15% relative improvement in multiproperty optimization success rates compared with the leading Modof model. Furthermore, a variant of Prompt-MolOpt, named Prompt-MolOptP, can preserve the pharmacophores or any user-specified fragments under the structural transformation, further broadening its application scope. By constructing tailored optimization datasets, with the protocol introduced in this work, Prompt-MolOpt steers molecular optimization towards domain-relevant chemical spaces, enhancing the quality of the optimized molecules. Real-world tests, such as those involving blood–brain barrier permeability optimization, underscore its practical relevance. Prompt-MolOpt offers a versatile approach for multiproperty and multi-site molecular optimizations, suggesting its potential utility in chemistry research and drug and material discovery.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.