Realizing near-full density monophasic tetragonal 1.5-mol% yttria-stabilized zirconia ceramics via current-ramp flash sintering

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fei Shen Ong , Kohta Nambu , Kenta Kawamura , Kohei Hosoi , Hiroshi Masuda , Bin Feng , Koji Matsui , Yuichi Ikuhara , Hidehiro Yoshida
{"title":"Realizing near-full density monophasic tetragonal 1.5-mol% yttria-stabilized zirconia ceramics via current-ramp flash sintering","authors":"Fei Shen Ong ,&nbsp;Kohta Nambu ,&nbsp;Kenta Kawamura ,&nbsp;Kohei Hosoi ,&nbsp;Hiroshi Masuda ,&nbsp;Bin Feng ,&nbsp;Koji Matsui ,&nbsp;Yuichi Ikuhara ,&nbsp;Hidehiro Yoshida","doi":"10.1016/j.actamat.2024.120496","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates the successful fabrication of near-full density monophasic tetragonal 1.5-mol% yttria-stabilized zirconia (1.5YSZ) ceramics using current-ramp flash (CRF) sintering technique. The process involved regulating Joule heating in the samples by fine-tuning the input power through an alternating current field (nominal current density: 50 mA·mm<sup>−2</sup>) within a 3-min timeframe at a furnace temperature of 1100°C. This approach effectively enhanced grain size uniformity, which is crucial for preventing sample cracking associated with spontaneous tetragonal-to-monoclinic (T→M) phase transformation, thereby promoting densification with average relative densities exceeding 99%. The highest average fracture toughness of the 1.5YSZ samples was measured at 9.2 MPa·m<sup>0.5</sup> using the standardized single-edge pre-cracked beam method. This toughness is approximately double that of commonly used 3YSZ samples produced by CRF sintering, all of which exhibited comparable average grain sizes and relative densities. Additionally, the 1.5YSZ samples demonstrated nearly identical resistance to low-temperature degradation (LTD) compared to the 3YSZ samples after accelerated hydrothermal aging at 140°C for 15 h, roughly equivalent to 60 years at 37°C. The reduced yttria concentration in 1.5YSZ facilitates T→M phase transformation at lower stress thresholds, enhancing toughness through increased crack shielding from a larger volume fraction of transformed grains. Furthermore, the uniform yttria distribution in 1.5YSZ, revealed by scanning transmission electron microscopy, compensates for the reduced tetragonal phase stability and contributes to improved LTD resistance. Notably, these exceptional properties were achieved at a furnace temperature 300°C lower and with a sintering duration several hours shorter than those of conventionally-sintered counterparts.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120496"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the successful fabrication of near-full density monophasic tetragonal 1.5-mol% yttria-stabilized zirconia (1.5YSZ) ceramics using current-ramp flash (CRF) sintering technique. The process involved regulating Joule heating in the samples by fine-tuning the input power through an alternating current field (nominal current density: 50 mA·mm−2) within a 3-min timeframe at a furnace temperature of 1100°C. This approach effectively enhanced grain size uniformity, which is crucial for preventing sample cracking associated with spontaneous tetragonal-to-monoclinic (T→M) phase transformation, thereby promoting densification with average relative densities exceeding 99%. The highest average fracture toughness of the 1.5YSZ samples was measured at 9.2 MPa·m0.5 using the standardized single-edge pre-cracked beam method. This toughness is approximately double that of commonly used 3YSZ samples produced by CRF sintering, all of which exhibited comparable average grain sizes and relative densities. Additionally, the 1.5YSZ samples demonstrated nearly identical resistance to low-temperature degradation (LTD) compared to the 3YSZ samples after accelerated hydrothermal aging at 140°C for 15 h, roughly equivalent to 60 years at 37°C. The reduced yttria concentration in 1.5YSZ facilitates T→M phase transformation at lower stress thresholds, enhancing toughness through increased crack shielding from a larger volume fraction of transformed grains. Furthermore, the uniform yttria distribution in 1.5YSZ, revealed by scanning transmission electron microscopy, compensates for the reduced tetragonal phase stability and contributes to improved LTD resistance. Notably, these exceptional properties were achieved at a furnace temperature 300°C lower and with a sintering duration several hours shorter than those of conventionally-sintered counterparts.

Abstract Image

Abstract Image

通过电流斜坡闪速烧结实现接近全密度的单相四边形 1.5 摩尔%钇稳定氧化锆陶瓷
本研究展示了利用电流跃迁闪蒸(CRF)烧结技术成功制造出接近全密度的单相四边形 1.5 摩尔%钇稳定氧化锆(1.5YSZ)陶瓷。该过程包括在 1100°C 的炉温下,通过交流电场(标称电流密度:50 mA-mm-2)在 3 分钟的时间内微调输入功率,从而调节样品中的焦耳热。这种方法有效地提高了晶粒尺寸的均匀性,这对于防止与自发四方晶到单斜晶(T→M)相变相关的样品开裂至关重要,从而促进了平均相对密度超过 99% 的致密化。采用标准化的单边预裂梁法测量,1.5YSZ 样品的平均断裂韧性最高,达到 9.2 MPa-m0.5。这一韧性大约是通过 CRF 烧结法生产的常用 3YSZ 样品的两倍,所有这些样品的平均晶粒大小和相对密度都相当。此外,与 3YSZ 样品相比,1.5YSZ 样品在 140°C 下加速水热老化 15 小时(大致相当于在 37°C 下老化 60 年)后,表现出几乎相同的抗低温降解(LTD)能力。1.5YSZ 中钇浓度的降低有利于在较低的应力阈值下发生 T→M 相变,从而通过较大体积分数的转化晶粒增加裂纹屏蔽来提高韧性。此外,扫描透射电子显微镜显示,1.5YSZ 中的钇分布均匀,这弥补了四方相稳定性降低的缺陷,并有助于提高耐 LTD 性。值得注意的是,与传统烧结的同类产品相比,1.5YSZ 的炉温降低了 300°C,烧结时间缩短了几个小时,就能获得这些优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信