Jesse D Ey,Victoria Kollias,Matheesha B Herath,Octavia Lee,Martin H Bruening,Adam J Wells,Guy J Maddern
{"title":"Development and validation of a novel tool for identification and categorization of non-technical errors associated with surgical mortality.","authors":"Jesse D Ey,Victoria Kollias,Matheesha B Herath,Octavia Lee,Martin H Bruening,Adam J Wells,Guy J Maddern","doi":"10.1093/bjs/znae253","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nUp to half of all surgical adverse events are due to non-technical errors, making non-technical skill assessment and improvement a priority. No specific tools are available to retrospectively identify non-technical errors that have occurred in surgical patient care. This original study aimed to develop and provide evidence of validity and inter-rater reliability for the System for Identification and Categorization of Non-technical Error in Surgical Settings (SICNESS).\r\n\r\nMETHODS\r\nA literature review, modified Delphi process, and two pilot phases were used to develop and test the SICNESS tool. For each pilot, 12 months of surgical mortality data from the Australian and New Zealand Audit of Surgical Mortality were assessed by two independent reviewers using the SICNESS tool. Main outcomes included tool validation through modified Delphi consensus, and inter-rater reliability for: non-technical error identification and non-technical error categorization using Cohen's κ coefficient, and overall agreement using Fleiss' κ coefficient.\r\n\r\nRESULTS\r\nVersion 1 of the SICNESS was used for pilot 1, including 412 mortality cases, and identified and categorized non-technical errors with strong-moderate inter-rater reliability. Non-technical error exemplars were created and validated through Delphi consensus, and a novel mental model was developed. Pilot 2 included an additional 432 mortality cases. Inter-rater reliability was near perfect for leadership (κ 0.92, 95% c.i. 0.82 to 1.00); strong for non-technical error identification (κ 0.89, 0.84 to 0.93), communication and teamwork (κ 0.89, 0.79 to 0.99), and decision-making (κ 0.85, 0.79 to 0.92); and moderate for situational awareness (κ 0.79, 0.71 to 0.87) and overall agreement (κ 0.69, 0.66 to 0.73).\r\n\r\nCONCLUSION\r\nThe SICNESS is a reliable and valid tool, enabling retrospective identification and categorization of non-technical errors associated with death, occurring in real surgical patient interactions.","PeriodicalId":136,"journal":{"name":"British Journal of Surgery","volume":"233 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjs/znae253","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Up to half of all surgical adverse events are due to non-technical errors, making non-technical skill assessment and improvement a priority. No specific tools are available to retrospectively identify non-technical errors that have occurred in surgical patient care. This original study aimed to develop and provide evidence of validity and inter-rater reliability for the System for Identification and Categorization of Non-technical Error in Surgical Settings (SICNESS).
METHODS
A literature review, modified Delphi process, and two pilot phases were used to develop and test the SICNESS tool. For each pilot, 12 months of surgical mortality data from the Australian and New Zealand Audit of Surgical Mortality were assessed by two independent reviewers using the SICNESS tool. Main outcomes included tool validation through modified Delphi consensus, and inter-rater reliability for: non-technical error identification and non-technical error categorization using Cohen's κ coefficient, and overall agreement using Fleiss' κ coefficient.
RESULTS
Version 1 of the SICNESS was used for pilot 1, including 412 mortality cases, and identified and categorized non-technical errors with strong-moderate inter-rater reliability. Non-technical error exemplars were created and validated through Delphi consensus, and a novel mental model was developed. Pilot 2 included an additional 432 mortality cases. Inter-rater reliability was near perfect for leadership (κ 0.92, 95% c.i. 0.82 to 1.00); strong for non-technical error identification (κ 0.89, 0.84 to 0.93), communication and teamwork (κ 0.89, 0.79 to 0.99), and decision-making (κ 0.85, 0.79 to 0.92); and moderate for situational awareness (κ 0.79, 0.71 to 0.87) and overall agreement (κ 0.69, 0.66 to 0.73).
CONCLUSION
The SICNESS is a reliable and valid tool, enabling retrospective identification and categorization of non-technical errors associated with death, occurring in real surgical patient interactions.
期刊介绍:
The British Journal of Surgery (BJS), incorporating the European Journal of Surgery, stands as Europe's leading peer-reviewed surgical journal. It serves as an invaluable platform for presenting high-quality clinical and laboratory-based research across a wide range of surgical topics. In addition to providing a comprehensive coverage of traditional surgical practices, BJS also showcases emerging areas in the field, such as minimally invasive therapy and interventional radiology.
While the journal appeals to general surgeons, it also holds relevance for specialty surgeons and professionals working in closely related fields. By presenting cutting-edge research and advancements, BJS aims to revolutionize the way surgical knowledge is shared and contribute to the ongoing progress of the surgical community.