Rahnuma Islam Nishat, Venkatesh Srinivasan, Sue Whitesides
{"title":"The hamiltonian path graph is connected for simple s, t paths in rectangular grid graphs","authors":"Rahnuma Islam Nishat, Venkatesh Srinivasan, Sue Whitesides","doi":"10.1007/s10878-024-01207-w","DOIUrl":null,"url":null,"abstract":"<p>An <i>s</i>, <i>t</i> Hamiltonian path <i>P</i> for an <span>\\(m \\times n\\)</span> rectangular grid graph <span>\\(\\mathbb {G}\\)</span> is a Hamiltonian path from the top-left corner <i>s</i> to the bottom-right corner <i>t</i>. We define an operation “square-switch” on <i>s</i>, <i>t</i> Hamiltonian paths <i>P</i> affecting only those edges of <i>P</i> that lie in some small (2 units by 2 units) square subgrid of <span>\\(\\mathbb {G}\\)</span>. We prove that when applied to suitable locations, the result of the square-switch is another <i>s</i>, <i>t</i> Hamiltonian path. Then we use square-switch to achieve a reconfiguration result for a subfamily of <i>s</i>, <i>t</i> Hamiltonian paths we call <i>simple paths</i>, that has the minimum number of bends for each maximal internal subpath connecting any two vertices on the boundary of the grid graph. We give an algorithmic proof that the Hamiltonian path graph <span>\\(\\mathcal {G}\\)</span> whose vertices represent simple paths is connected when edges arise from the square-switch operation: our algorithm reconfigures any given initial simple path <i>P</i> to any given target simple path <span>\\(P'\\)</span> in <span>\\(\\mathcal {O}\\)</span>(<span>\\( |P |\\)</span>) time and <span>\\(\\mathcal {O}\\)</span>(<span>\\( |P |\\)</span>) space using at most <span>\\({5} |P |/ {4}\\)</span> square-switches, where <span>\\( |P |= m \\times n\\)</span> is the number of vertices in the grid graph <span>\\(\\mathbb {G}\\)</span> and hence in any Hamiltonian path <i>P</i> for <span>\\(\\mathbb {G}\\)</span>. Thus the diameter of the simple path graph <span>\\(\\mathcal {G}\\)</span> is at most 5<i>mn</i>/ 4 for the square-switch operation, which we show is asymptotically tight for this operation.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"372 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01207-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An s, t Hamiltonian path P for an \(m \times n\) rectangular grid graph \(\mathbb {G}\) is a Hamiltonian path from the top-left corner s to the bottom-right corner t. We define an operation “square-switch” on s, t Hamiltonian paths P affecting only those edges of P that lie in some small (2 units by 2 units) square subgrid of \(\mathbb {G}\). We prove that when applied to suitable locations, the result of the square-switch is another s, t Hamiltonian path. Then we use square-switch to achieve a reconfiguration result for a subfamily of s, t Hamiltonian paths we call simple paths, that has the minimum number of bends for each maximal internal subpath connecting any two vertices on the boundary of the grid graph. We give an algorithmic proof that the Hamiltonian path graph \(\mathcal {G}\) whose vertices represent simple paths is connected when edges arise from the square-switch operation: our algorithm reconfigures any given initial simple path P to any given target simple path \(P'\) in \(\mathcal {O}\)(\( |P |\)) time and \(\mathcal {O}\)(\( |P |\)) space using at most \({5} |P |/ {4}\) square-switches, where \( |P |= m \times n\) is the number of vertices in the grid graph \(\mathbb {G}\) and hence in any Hamiltonian path P for \(\mathbb {G}\). Thus the diameter of the simple path graph \(\mathcal {G}\) is at most 5mn/ 4 for the square-switch operation, which we show is asymptotically tight for this operation.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.