Jinkui Hao, William R. Kwapong, Ting Shen, Huazhu Fu, Yanwu Xu, Qinkang Lu, Shouyue Liu, Jiong Zhang, Yonghuai Liu, Yifan Zhao, Yalin Zheng, Alejandro F. Frangi, Shuting Zhang, Hong Qi, Yitian Zhao
{"title":"Early detection of dementia through retinal imaging and trustworthy AI","authors":"Jinkui Hao, William R. Kwapong, Ting Shen, Huazhu Fu, Yanwu Xu, Qinkang Lu, Shouyue Liu, Jiong Zhang, Yonghuai Liu, Yifan Zhao, Yalin Zheng, Alejandro F. Frangi, Shuting Zhang, Hong Qi, Yitian Zhao","doi":"10.1038/s41746-024-01292-5","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is a global healthcare challenge lacking a simple and affordable detection method. We propose a novel deep learning framework, Eye-AD, to detect Early-onset Alzheimer’s Disease (EOAD) and Mild Cognitive Impairment (MCI) using OCTA images of retinal microvasculature and choriocapillaris. Eye-AD employs a multilevel graph representation to analyze intra- and inter-instance relationships in retinal layers. Using 5751 OCTA images from 1671 participants in a multi-center study, our model demonstrated superior performance in EOAD (internal data: AUC = 0.9355, external data: AUC = 0.9007) and MCI detection (internal data: AUC = 0.8630, external data: AUC = 0.8037). Furthermore, we explored the associations between retinal structural biomarkers in OCTA images and EOAD/MCI, and the results align well with the conclusions drawn from our deep learning interpretability analysis. Our findings provide further evidence that retinal OCTA imaging, coupled with artificial intelligence, will serve as a rapid, noninvasive, and affordable dementia detection.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-15"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01292-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01292-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a global healthcare challenge lacking a simple and affordable detection method. We propose a novel deep learning framework, Eye-AD, to detect Early-onset Alzheimer’s Disease (EOAD) and Mild Cognitive Impairment (MCI) using OCTA images of retinal microvasculature and choriocapillaris. Eye-AD employs a multilevel graph representation to analyze intra- and inter-instance relationships in retinal layers. Using 5751 OCTA images from 1671 participants in a multi-center study, our model demonstrated superior performance in EOAD (internal data: AUC = 0.9355, external data: AUC = 0.9007) and MCI detection (internal data: AUC = 0.8630, external data: AUC = 0.8037). Furthermore, we explored the associations between retinal structural biomarkers in OCTA images and EOAD/MCI, and the results align well with the conclusions drawn from our deep learning interpretability analysis. Our findings provide further evidence that retinal OCTA imaging, coupled with artificial intelligence, will serve as a rapid, noninvasive, and affordable dementia detection.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.