{"title":"M-Net: A Skin Cancer Classification With Improved Convolutional Neural Network Based on the Enhanced Gray Wolf Optimization Algorithm","authors":"Zhinan Xu, Xiaoxia Zhang, Luzhou Liu","doi":"10.1002/ima.23202","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skin cancer is a common malignant tumor causing tens of thousands of deaths each year, making early detection essential for better treatment outcomes. However, the similar visual characteristics of skin lesions make it challenging to accurately differentiate between lesion types. With advancements in deep learning, researchers have increasingly turned to convolutional neural networks for skin cancer detection and classification. In this article, an improved skin cancer classification model M-Net is proposed, and the enhanced gray wolf optimization algorithm is combined to improve the classification performance. The gray wolf optimization algorithm guides the wolf pack to prey through a multileader structure and gradually converges through the encirclement and pursuit mechanism, so as to perform a more detailed search in the later stage. To further improve the performance of the gray wolf optimization, this study introduces the simulated annealing algorithm to avoid falling into the local optimal state and expands the search range by improving the search mechanism, thus enhancing the global optimization ability of the algorithm. The M-Net model significantly improves the accuracy of classification by extracting features of skin lesions and optimizing parameters with the enhanced gray wolf optimization algorithm. The experimental results based on the ISIC 2018 dataset show that compared with the baseline model, the feature extraction network of the model has achieved a significant improvement in accuracy. The classification performance of M-Net is excellent in multiple indicators, with accuracy, precision, recall, and F1 score reaching 0.891, 0.857, 0.895, and 0.872, respectively. In addition, the modular design of M-Net enables it to flexibly adjust feature extraction and classification modules to adapt to different classification tasks, showing great scalability and applicability. In general, the model proposed in this article performs well in the classification of skin lesions, has broad clinical application prospects, and provides strong support for promoting the diagnosis of skin diseases.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23202","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer is a common malignant tumor causing tens of thousands of deaths each year, making early detection essential for better treatment outcomes. However, the similar visual characteristics of skin lesions make it challenging to accurately differentiate between lesion types. With advancements in deep learning, researchers have increasingly turned to convolutional neural networks for skin cancer detection and classification. In this article, an improved skin cancer classification model M-Net is proposed, and the enhanced gray wolf optimization algorithm is combined to improve the classification performance. The gray wolf optimization algorithm guides the wolf pack to prey through a multileader structure and gradually converges through the encirclement and pursuit mechanism, so as to perform a more detailed search in the later stage. To further improve the performance of the gray wolf optimization, this study introduces the simulated annealing algorithm to avoid falling into the local optimal state and expands the search range by improving the search mechanism, thus enhancing the global optimization ability of the algorithm. The M-Net model significantly improves the accuracy of classification by extracting features of skin lesions and optimizing parameters with the enhanced gray wolf optimization algorithm. The experimental results based on the ISIC 2018 dataset show that compared with the baseline model, the feature extraction network of the model has achieved a significant improvement in accuracy. The classification performance of M-Net is excellent in multiple indicators, with accuracy, precision, recall, and F1 score reaching 0.891, 0.857, 0.895, and 0.872, respectively. In addition, the modular design of M-Net enables it to flexibly adjust feature extraction and classification modules to adapt to different classification tasks, showing great scalability and applicability. In general, the model proposed in this article performs well in the classification of skin lesions, has broad clinical application prospects, and provides strong support for promoting the diagnosis of skin diseases.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.