{"title":"Adjoint-Based Calibration of Nonlinear Stochastic Differential Equations","authors":"Jan Bartsch, Robert Denk, Stefan Volkwein","doi":"10.1007/s00245-024-10181-y","DOIUrl":null,"url":null,"abstract":"<div><p>To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully to match the experimental data and to validate the effectiveness of the model. In the present paper the calibration of these parameters is described by nonlinear SDE-constrained optimization problems. In the optimize-before-discretize setting a rigorous analysis is carried out to ensure the existence of optimal solutions and to derive necessary first-order optimality conditions. For the numerical solution a Monte–Carlo method is applied using parallelization strategies to compensate for the high computational time. In the numerical examples an Ornstein–Uhlenbeck and a stochastic Prandtl–Tomlinson bath model are considered.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-024-10181-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10181-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully to match the experimental data and to validate the effectiveness of the model. In the present paper the calibration of these parameters is described by nonlinear SDE-constrained optimization problems. In the optimize-before-discretize setting a rigorous analysis is carried out to ensure the existence of optimal solutions and to derive necessary first-order optimality conditions. For the numerical solution a Monte–Carlo method is applied using parallelization strategies to compensate for the high computational time. In the numerical examples an Ornstein–Uhlenbeck and a stochastic Prandtl–Tomlinson bath model are considered.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.