{"title":"Explicit A Posteriori Error Representation for Variational Problems and Application to TV-Minimization","authors":"Sören Bartels, Alex Kaltenbach","doi":"10.1007/s10208-024-09676-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a general approach for explicit <i>a posteriori</i> error representation for convex minimization problems using basic convex duality relations. Exploiting discrete orthogonality relations in the space of element-wise constant vector fields as well as a discrete integration-by-parts formula between the Crouzeix–Raviart and the Raviart–Thomas element, all convex duality relations are transferred to a discrete level, making the explicit <i>a posteriori</i> error representation –initially based on continuous arguments only– practicable from a numerical point of view. In addition, we provide a generalized Marini formula that determines a discrete primal solution in terms of a given discrete dual solution. We benchmark all these concepts via the Rudin–Osher–Fatemi model. This leads to an adaptive algorithm that yields a (quasi-optimal) linear convergence rate.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"20 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09676-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a general approach for explicit a posteriori error representation for convex minimization problems using basic convex duality relations. Exploiting discrete orthogonality relations in the space of element-wise constant vector fields as well as a discrete integration-by-parts formula between the Crouzeix–Raviart and the Raviart–Thomas element, all convex duality relations are transferred to a discrete level, making the explicit a posteriori error representation –initially based on continuous arguments only– practicable from a numerical point of view. In addition, we provide a generalized Marini formula that determines a discrete primal solution in terms of a given discrete dual solution. We benchmark all these concepts via the Rudin–Osher–Fatemi model. This leads to an adaptive algorithm that yields a (quasi-optimal) linear convergence rate.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.