Leta R. McCullough, Kelsey T. Crane, Stephan R. Loveless, Christian Klimczak
{"title":"Morphological and Structural Characterization of Shortening Landforms on Mars","authors":"Leta R. McCullough, Kelsey T. Crane, Stephan R. Loveless, Christian Klimczak","doi":"10.1029/2023JE008196","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The lithosphere of Mars accommodates horizontal shortening through folding and faulting, producing landforms described as wrinkle ridges or lobate scarps. Despite this nomenclature, we lack a deep understanding of the drivers of morphological differences observed between landform types. This study aims to develop a quantitative model for shortening landform classification based on surface morphology, subsurface architecture, and strain accommodation, facilitating interpretations of where and how lithospheric stresses are recorded. We developed this model by mapping 100 shortening landforms in a Geographic Information System, recording 12 unique geomorphic parameters such as length and asymmetry, and estimating the strain of each landform. We conducted a Discriminant Function Analysis (DFA) using surface morphometrics. This DFA produced a predictive linear function for categorizing wrinkle ridges and lobate scarps and for quantifying which landforms were exemplars within those categories. The three most influential variables on the surface morphometry DFA were the maximum width, forelimb slope, and back limb length. We then modeled the subsurface structural geology of 50 landforms using MOVE Structural Geology Modeling Software and conducted a second DFA based on subsurface metrics. DFA was most influenced by the dip and depth of the lower ramp base. When both surface morphology and subsurface geometry are input into single DFA, wrinkle ridges and lobate scarps can be distinguished quantitatively 96% of the time. Our results also show that lobate scarps accommodate more strain and imply that studies should consider landform type when interpreting local, regional, and global geological stress histories.</p>\n </section>\n </div>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008196","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The lithosphere of Mars accommodates horizontal shortening through folding and faulting, producing landforms described as wrinkle ridges or lobate scarps. Despite this nomenclature, we lack a deep understanding of the drivers of morphological differences observed between landform types. This study aims to develop a quantitative model for shortening landform classification based on surface morphology, subsurface architecture, and strain accommodation, facilitating interpretations of where and how lithospheric stresses are recorded. We developed this model by mapping 100 shortening landforms in a Geographic Information System, recording 12 unique geomorphic parameters such as length and asymmetry, and estimating the strain of each landform. We conducted a Discriminant Function Analysis (DFA) using surface morphometrics. This DFA produced a predictive linear function for categorizing wrinkle ridges and lobate scarps and for quantifying which landforms were exemplars within those categories. The three most influential variables on the surface morphometry DFA were the maximum width, forelimb slope, and back limb length. We then modeled the subsurface structural geology of 50 landforms using MOVE Structural Geology Modeling Software and conducted a second DFA based on subsurface metrics. DFA was most influenced by the dip and depth of the lower ramp base. When both surface morphology and subsurface geometry are input into single DFA, wrinkle ridges and lobate scarps can be distinguished quantitatively 96% of the time. Our results also show that lobate scarps accommodate more strain and imply that studies should consider landform type when interpreting local, regional, and global geological stress histories.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.