A Variational Bayesian Truncated Adaptive Filter for Uncertain Systems with Inequality Constraints

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Tianli Ma, Rong Zhang, Song Gao, Hong Li, Yang Zhang
{"title":"A Variational Bayesian Truncated Adaptive Filter for Uncertain Systems with Inequality Constraints","authors":"Tianli Ma,&nbsp;Rong Zhang,&nbsp;Song Gao,&nbsp;Hong Li,&nbsp;Yang Zhang","doi":"10.1049/2024/3809689","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, a variational Bayesian (VB) truncated adaptive filter for uncertain systems with inequality constraints is proposed. By choosing the skew-<i>t</i> and inverse Wishart distributions as the prior information of the measurement noise and predicted error covariance matrix, the state vector, the predicted error covariance matrix, and noise parameters are inferred and approximated by using the VB method. To achieve the inequality-constrained estimation, the constrained state is computed by truncating the probability density function (PDF) of the estimated state after the variational update stage; the mean and covariance of the constrained state are the first and second moments of the truncated PDF. Considering the model uncertainties where the system dynamics are unpredictable, a multiple model VB truncated adaptive filter is proposed in the interacting multiple model framework. The performances of the proposed algorithms are evaluated via the target tracking simulations and the robot positioning experiments. Results show that the proposed algorithms improve estimation accuracy compared with the existing adaptive filters when the states suffer inequality constraints.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/3809689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/3809689","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a variational Bayesian (VB) truncated adaptive filter for uncertain systems with inequality constraints is proposed. By choosing the skew-t and inverse Wishart distributions as the prior information of the measurement noise and predicted error covariance matrix, the state vector, the predicted error covariance matrix, and noise parameters are inferred and approximated by using the VB method. To achieve the inequality-constrained estimation, the constrained state is computed by truncating the probability density function (PDF) of the estimated state after the variational update stage; the mean and covariance of the constrained state are the first and second moments of the truncated PDF. Considering the model uncertainties where the system dynamics are unpredictable, a multiple model VB truncated adaptive filter is proposed in the interacting multiple model framework. The performances of the proposed algorithms are evaluated via the target tracking simulations and the robot positioning experiments. Results show that the proposed algorithms improve estimation accuracy compared with the existing adaptive filters when the states suffer inequality constraints.

针对具有不等式约束的不确定系统的变式贝叶斯截断自适应滤波器
本文提出了一种针对具有不等式约束的不确定系统的变分贝叶斯(VB)截断自适应滤波器。通过选择 skew-t 分布和逆 Wishart 分布作为测量噪声和预测误差协方差矩阵的先验信息,利用 VB 方法推断并近似得到状态向量、预测误差协方差矩阵和噪声参数。为了实现不等式约束估计,在变分更新阶段之后,通过截断估计状态的概率密度函数(PDF)来计算约束状态;约束状态的均值和协方差是截断 PDF 的第一矩和第二矩。考虑到系统动态不可预测的模型不确定性,在交互多模型框架下提出了一种多模型 VB 截断自适应滤波器。通过目标跟踪仿真和机器人定位实验评估了所提算法的性能。结果表明,当状态受到不等式约束时,与现有的自适应滤波器相比,所提出的算法提高了估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信