{"title":"Hemodynamic characteristics of pulsatile blood flow through bifurcated stenosed carotid artery","authors":"Swapnil Narayan Rajmane, Shaligram Tiwari","doi":"10.1108/hff-05-2024-0376","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Carotid artery is often associated with plaque deposition because of its shape and associated flow features. The shape of stenosed bifurcation is characterised by bifurcation angle (<em>ß</em>), planarity angle (<em>α</em>) and severity of stenosis (b). In the present work, three-dimensional numerical computations have been performed to analyse the effect of these geometrical parameters of carotid bifurcation on the characteristics of flow.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Governing equations of this study were solved using ANSYS Fluent 20.1 and the blood flow was considered as laminar, pulsatile and non-Newtonian. Instantaneous flow behaviour has been illustrated using vorticity, velocity and helicity contours, whereas the time-averaged wall shear stress (<span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>τ</mml:mi><mml:mi>w</mml:mi></mml:msub></mml:mrow><mml:mo stretchy=\"true\">¯</mml:mo></mml:mover></mml:mrow></mml:math></span>) and oscillatory shear index (OSI) quantify the time-averaged behaviour.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The recirculation zone and secondary flow are ascertained to be stronger for higher bifurcation angle as compared to the lower bifurcation angle. Strength of the secondary flow is found to reduce with increase in <em>α</em> from 0° to 10°, whereas it grows as <em>α</em> varies from 10° to 20°. For higher bifurcation angles, <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>τ</mml:mi><mml:mi>w</mml:mi></mml:msub></mml:mrow><mml:mo stretchy=\"true\">¯</mml:mo></mml:mover></mml:mrow></mml:math></span> is lower than 2 Pa and OSI is greater than 0.2 on the outer walls. Similar observations were made for <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>τ</mml:mi><mml:mi>w</mml:mi></mml:msub></mml:mrow><mml:mo stretchy=\"true\">¯</mml:mo></mml:mover></mml:mrow></mml:math></span> and OSI distribution on bottom wall in non-planar cases, which predicted atherogenic locations.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The values for ß were taken as 30°, 45°, 60° and 75°, whereas for <em>α</em>, range of 0°–20° was chosen. The stenosis was considered on the outer wall of internal carotid artery and its severity was considered within the range of 0%–60%.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"44 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-05-2024-0376","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Carotid artery is often associated with plaque deposition because of its shape and associated flow features. The shape of stenosed bifurcation is characterised by bifurcation angle (ß), planarity angle (α) and severity of stenosis (b). In the present work, three-dimensional numerical computations have been performed to analyse the effect of these geometrical parameters of carotid bifurcation on the characteristics of flow.
Design/methodology/approach
Governing equations of this study were solved using ANSYS Fluent 20.1 and the blood flow was considered as laminar, pulsatile and non-Newtonian. Instantaneous flow behaviour has been illustrated using vorticity, velocity and helicity contours, whereas the time-averaged wall shear stress (τw¯) and oscillatory shear index (OSI) quantify the time-averaged behaviour.
Findings
The recirculation zone and secondary flow are ascertained to be stronger for higher bifurcation angle as compared to the lower bifurcation angle. Strength of the secondary flow is found to reduce with increase in α from 0° to 10°, whereas it grows as α varies from 10° to 20°. For higher bifurcation angles, τw¯ is lower than 2 Pa and OSI is greater than 0.2 on the outer walls. Similar observations were made for τw¯ and OSI distribution on bottom wall in non-planar cases, which predicted atherogenic locations.
Originality/value
The values for ß were taken as 30°, 45°, 60° and 75°, whereas for α, range of 0°–20° was chosen. The stenosis was considered on the outer wall of internal carotid artery and its severity was considered within the range of 0%–60%.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf