Zhineng Fei;Hongming Yang;Liang Du;Josep M. Guerrero;Ke Meng;Zhengmao Li
{"title":"Two-Stage Coordinated Operation of a Green Multi-Energy Ship Microgrid With Underwater Radiated Noise by Distributed Stochastic Approach","authors":"Zhineng Fei;Hongming Yang;Liang Du;Josep M. Guerrero;Ke Meng;Zhengmao Li","doi":"10.1109/TSG.2024.3482980","DOIUrl":null,"url":null,"abstract":"Increasing multi-energy coordination in the ship necessitates advanced operation strategies to achieve greenhouse gas reduction and energy efficiency improvement in the maritime industry. However, previous research always overlooks onboard heterogeneous energy carriers and ship power distribution networks (SPDN), as well as underwater radiated noise (URN) generated by ship propellers. This will pose a huge threat to the operational safety of the multi-energy ship microgrids (MESMs) and further harm normal marine life. Hence, this paper formulates a coordinated model for a MESM with combined power, thermal, hydrogen, and freshwater flows. First, the joint energy management and voyage scheduling are modeled for the MESM, considering SPDN constraints and URN limits. Then, a copula-based two-stage operation structure with stochastic programming (SP) and rolling horizon (RH) methods is designed to tackle diverse uncertainties from onboard multi-energy loads and renewable energy. Finally, a progressive hedging (PH) algorithm is developed to support distributed calculation and accelerate the solution. Numerical case studies based on a real voyage in the Nordic countries are used to validate the effectiveness and superiority of the proposed model and method.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 2","pages":"1062-1074"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720909","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720909/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing multi-energy coordination in the ship necessitates advanced operation strategies to achieve greenhouse gas reduction and energy efficiency improvement in the maritime industry. However, previous research always overlooks onboard heterogeneous energy carriers and ship power distribution networks (SPDN), as well as underwater radiated noise (URN) generated by ship propellers. This will pose a huge threat to the operational safety of the multi-energy ship microgrids (MESMs) and further harm normal marine life. Hence, this paper formulates a coordinated model for a MESM with combined power, thermal, hydrogen, and freshwater flows. First, the joint energy management and voyage scheduling are modeled for the MESM, considering SPDN constraints and URN limits. Then, a copula-based two-stage operation structure with stochastic programming (SP) and rolling horizon (RH) methods is designed to tackle diverse uncertainties from onboard multi-energy loads and renewable energy. Finally, a progressive hedging (PH) algorithm is developed to support distributed calculation and accelerate the solution. Numerical case studies based on a real voyage in the Nordic countries are used to validate the effectiveness and superiority of the proposed model and method.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.