{"title":"An Efficient Multiparty Threshold ECDSA Protocol against Malicious Adversaries for Blockchain-Based LLMs","authors":"Jing Wang, Xue Yuan, Yingjie Xu, Yudi Zhang","doi":"10.1049/2024/2252865","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Large language models (LLMs) have brought significant advancements to artificial intelligence, particularly in understanding and generating human language. However, concerns over management burden and data security have grown alongside their capabilities. To solve the problem, we design a blockchain-based distributed LLM framework, where LLM works in the distributed mode and its outputs can be stored and verified on a blockchain to ensure integrity, transparency, and traceability. In addition, a multiparty signature-based authentication mechanism is necessary to ensure stakeholder consensus before publication. To address these requirements, we propose a threshold elliptic curve digital signature algorithm that counters malicious adversaries in environments with three or more participants. Our approach relies on discrete logarithmic zero-knowledge proofs and Feldman verifiable secret sharing, reducing complexity by forgoing multiplication triple protocols. When compared with some related schemes, this optimization speeds up both the key generation and signing phases with constant rounds while maintaining security against malicious adversaries.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2252865","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2252865","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) have brought significant advancements to artificial intelligence, particularly in understanding and generating human language. However, concerns over management burden and data security have grown alongside their capabilities. To solve the problem, we design a blockchain-based distributed LLM framework, where LLM works in the distributed mode and its outputs can be stored and verified on a blockchain to ensure integrity, transparency, and traceability. In addition, a multiparty signature-based authentication mechanism is necessary to ensure stakeholder consensus before publication. To address these requirements, we propose a threshold elliptic curve digital signature algorithm that counters malicious adversaries in environments with three or more participants. Our approach relies on discrete logarithmic zero-knowledge proofs and Feldman verifiable secret sharing, reducing complexity by forgoing multiplication triple protocols. When compared with some related schemes, this optimization speeds up both the key generation and signing phases with constant rounds while maintaining security against malicious adversaries.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf