Guido Lagos, Javiera Barrera, Pablo Romero, Juan Valencia
{"title":"Limiting Behavior of Mixed Coherent Systems With Lévy-Frailty Marshall–Olkin Failure Times","authors":"Guido Lagos, Javiera Barrera, Pablo Romero, Juan Valencia","doi":"10.1002/asmb.2893","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we show a limit result for the reliability function of a system—that is, the probability that the whole system is still operational after a certain given time—when the number of components of the system grows to infinity. More specifically, we consider a sequence of mixed coherent systems whose components are homogeneous and non-repairable, with failure-times governed by a Lévy-Frailty Marshall–Olkin (LFMO) distribution—a distribution that allows simultaneous component failures. We show that under integrability conditions the reliability function converges to the probability of a first-passage time of a Lévy subordinator process. To the best of our knowledge, this is the first result to tackle the asymptotic behavior of the reliability function as the number of components of the system grows. To illustrate our approach, we give an example of a parametric family of reliability functions where the system failure time converges in distribution to an exponential random variable, and give computational experiments testing convergence.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2893","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we show a limit result for the reliability function of a system—that is, the probability that the whole system is still operational after a certain given time—when the number of components of the system grows to infinity. More specifically, we consider a sequence of mixed coherent systems whose components are homogeneous and non-repairable, with failure-times governed by a Lévy-Frailty Marshall–Olkin (LFMO) distribution—a distribution that allows simultaneous component failures. We show that under integrability conditions the reliability function converges to the probability of a first-passage time of a Lévy subordinator process. To the best of our knowledge, this is the first result to tackle the asymptotic behavior of the reliability function as the number of components of the system grows. To illustrate our approach, we give an example of a parametric family of reliability functions where the system failure time converges in distribution to an exponential random variable, and give computational experiments testing convergence.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.