Fractional Milne-type inequalities for twice differentiable functions for Riemann–Liouville fractional integrals

IF 1.4 3区 数学 Q1 MATHEMATICS
Wali Haider, Hüseyin Budak, Asia Shehzadi
{"title":"Fractional Milne-type inequalities for twice differentiable functions for Riemann–Liouville fractional integrals","authors":"Wali Haider,&nbsp;Hüseyin Budak,&nbsp;Asia Shehzadi","doi":"10.1007/s13324-024-00980-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we investigate the error bounds associated with Milne’s formula, a well-known open Newton–Cotes approach, initially focused on differentiable convex functions within the frameworks of fractional calculus. Building on this work, we investigate fractional Milne-type inequalities, focusing on their application to the more refined class of twice-differentiable convex functions. This study effectively presents an identity involving twice differentiable functions and Riemann–Liouville fractional integrals. Using this newly established identity, we established error bounds for Milne’s formula in fractional and classical calculus. This study emphasizes the significance of convexity principles and incorporates the use of the Hölder inequality in formulating novel inequalities. In addition, we present precise mathematical illustrations to showcase the accuracy of the recently established bounds for Milne’s formula.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00980-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we investigate the error bounds associated with Milne’s formula, a well-known open Newton–Cotes approach, initially focused on differentiable convex functions within the frameworks of fractional calculus. Building on this work, we investigate fractional Milne-type inequalities, focusing on their application to the more refined class of twice-differentiable convex functions. This study effectively presents an identity involving twice differentiable functions and Riemann–Liouville fractional integrals. Using this newly established identity, we established error bounds for Milne’s formula in fractional and classical calculus. This study emphasizes the significance of convexity principles and incorporates the use of the Hölder inequality in formulating novel inequalities. In addition, we present precise mathematical illustrations to showcase the accuracy of the recently established bounds for Milne’s formula.

黎曼-刘维尔分式积分的二次微分函数的分式米尔恩型不等式
在这项研究中,我们研究了与米尔恩公式相关的误差边界,米尔恩公式是一种著名的开放式牛顿-科特斯方法,最初侧重于分数微积分框架内的可微凸函数。在此基础上,我们研究了分数米尔恩型不等式,重点是将其应用于更精细的二次可微分凸函数类别。这项研究有效地提出了涉及二次可微分函数和黎曼-刘维尔分式积分的同一性。利用这一新建立的同一性,我们为分数微积分和经典微积分中的米尔恩公式建立了误差边界。这项研究强调了凸性原理的重要性,并在提出新的不等式时使用了赫尔德不等式。此外,我们还提供了精确的数学插图,以展示最近建立的米尔恩公式误差边界的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信