{"title":"Comparative Analysis of A3C and PPO Algorithms in Reinforcement Learning: A Survey on General Environments","authors":"Alberto del Rio;David Jimenez;Javier Serrano","doi":"10.1109/ACCESS.2024.3472473","DOIUrl":null,"url":null,"abstract":"This research article presents a comparison between two mainstream Deep Reinforcement Learning (DRL) algorithms, Asynchronous Advantage Actor-Critic (A3C) and Proximal Policy Optimization (PPO), in the context of two diverse environments: CartPole and Lunar Lander. DRL algorithms are widely known for their effectiveness in training agents to navigate complex environments and achieve optimal policies. Nevertheless, a methodical assessment of their effectiveness in various settings is crucial for comprehending their advantages and disadvantages. In this study, we conduct experiments on the CartPole and Lunar Lander environments using both A3C and PPO algorithms. We compare their performance in terms of convergence speed and stability. Our results indicate that A3C typically achieves quicker training times, but exhibits greater instability in reward values. Conversely, PPO demonstrates a more stable training process at the expense of longer execution times. An evaluation of the environment is needed in terms of algorithm selection, based on specific application needs, balancing between training time and stability. A3C is ideal for applications requiring rapid training, while PPO is better suited for those prioritizing training stability.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146795-146806"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703056/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This research article presents a comparison between two mainstream Deep Reinforcement Learning (DRL) algorithms, Asynchronous Advantage Actor-Critic (A3C) and Proximal Policy Optimization (PPO), in the context of two diverse environments: CartPole and Lunar Lander. DRL algorithms are widely known for their effectiveness in training agents to navigate complex environments and achieve optimal policies. Nevertheless, a methodical assessment of their effectiveness in various settings is crucial for comprehending their advantages and disadvantages. In this study, we conduct experiments on the CartPole and Lunar Lander environments using both A3C and PPO algorithms. We compare their performance in terms of convergence speed and stability. Our results indicate that A3C typically achieves quicker training times, but exhibits greater instability in reward values. Conversely, PPO demonstrates a more stable training process at the expense of longer execution times. An evaluation of the environment is needed in terms of algorithm selection, based on specific application needs, balancing between training time and stability. A3C is ideal for applications requiring rapid training, while PPO is better suited for those prioritizing training stability.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.