{"title":"A Real-Time Software-Defined Radio Platform for Sub-Terahertz Communication Systems","authors":"Hussam Abdellatif;Viduneth Ariyarathna;Arjuna Madanayake;Josep Miquel Jornet","doi":"10.1109/ACCESS.2024.3473615","DOIUrl":null,"url":null,"abstract":"Wireless communication in the sub-terahertz and terahertz (THz) bands (broadly from 100 GHz to 10 THz) is a critical building block of the future generations of telecommunication and networking due to the large available bandwidth at these frequencies and the opportunities it brings for ultra-broadband communication and sensing systems. Alongside the high data rates offered by this band, the huge bandwidth can be shared more generously across multiple users with hopes of reducing network congestion. With the recent improvements being made on the electronics side such as high-speed data converters and high-frequency oscillators, several testing platforms for experimental THz communication have been recently developed. However, these are mostly device technology demonstrators, channel sounders, or physical-layer testbeds, which do not support real-time digital signal processing (DSP). Such platforms have supported the large body of THz research focused on studying the channel or developing physical layer solutions. However, the lack of real-time DSP capabilities prevents the testing of upper networking protocols, on which the research community is only now starting to focus. While real-time networking platforms, namely, software-defined radio (SDR) platforms, developed for lower frequency systems could be utilized, their very low bandwidth misses the point of moving to the sub-THz and THz bands. To fill the gap, in this paper, we design an SDR platform able to process multi-GHz of baseband bandwidth in real-time by leveraging the state of the art in radio-frequency systems on chip (RFSoC), a custom frequency-multiplexing analog network and a multi-phase implementation of an orthogonal frequency-division modulation (OFDM) physical layer. As an instantiation of the platform, we demonstrate a real-time link at 135 GHz with 8 GHz of bandwidth supporting a bit-rate of 33 Gbps when frequency-multiplexing four 2-GHz-wide channels, each with 64-sub-carrier OFDM. Finally, we identify immediate next steps and cross-layer challenges foreseen when implementing wireless communication and sensing systems at frequencies above 100 GHz.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146315-146327"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704668/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless communication in the sub-terahertz and terahertz (THz) bands (broadly from 100 GHz to 10 THz) is a critical building block of the future generations of telecommunication and networking due to the large available bandwidth at these frequencies and the opportunities it brings for ultra-broadband communication and sensing systems. Alongside the high data rates offered by this band, the huge bandwidth can be shared more generously across multiple users with hopes of reducing network congestion. With the recent improvements being made on the electronics side such as high-speed data converters and high-frequency oscillators, several testing platforms for experimental THz communication have been recently developed. However, these are mostly device technology demonstrators, channel sounders, or physical-layer testbeds, which do not support real-time digital signal processing (DSP). Such platforms have supported the large body of THz research focused on studying the channel or developing physical layer solutions. However, the lack of real-time DSP capabilities prevents the testing of upper networking protocols, on which the research community is only now starting to focus. While real-time networking platforms, namely, software-defined radio (SDR) platforms, developed for lower frequency systems could be utilized, their very low bandwidth misses the point of moving to the sub-THz and THz bands. To fill the gap, in this paper, we design an SDR platform able to process multi-GHz of baseband bandwidth in real-time by leveraging the state of the art in radio-frequency systems on chip (RFSoC), a custom frequency-multiplexing analog network and a multi-phase implementation of an orthogonal frequency-division modulation (OFDM) physical layer. As an instantiation of the platform, we demonstrate a real-time link at 135 GHz with 8 GHz of bandwidth supporting a bit-rate of 33 Gbps when frequency-multiplexing four 2-GHz-wide channels, each with 64-sub-carrier OFDM. Finally, we identify immediate next steps and cross-layer challenges foreseen when implementing wireless communication and sensing systems at frequencies above 100 GHz.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.