{"title":"GA-SmaAt-GNet: Generative adversarial small attention GNet for extreme precipitation nowcasting","authors":"Eloy Reulen, Jie Shi, Siamak Mehrkanoon","doi":"10.1016/j.knosys.2024.112612","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, data-driven modeling approaches have gained significant attention across various meteorological applications, particularly in weather forecasting. However, these methods often face challenges in handling extreme weather conditions. In response, we present the GA-SmaAt-GNet model, a novel generative adversarial framework for extreme precipitation nowcasting. This model features a unique SmaAt-GNet generator, an extension of the successful SmaAt-UNet architecture, capable of integrating precipitation masks (binarized precipitation maps) to enhance predictive accuracy. Additionally, GA-SmaAt-GNet incorporates an attention-augmented discriminator inspired by the Pix2Pix architecture. This innovative framework paves the way for generative precipitation nowcasting using multiple data sources. We evaluate the performance of SmaAt-GNet and GA-SmaAt-GNet using real-life precipitation data from The Netherlands, revealing notable improvements in overall performance and for extreme precipitation events compared to other models. Specifically, our proposed architecture demonstrates its main performance gain in summer and autumn, when precipitation intensity is typically at its peak. Furthermore, we conduct uncertainty analysis on the GA-SmaAt-GNet model and the precipitation dataset, providing insights into its predictive capabilities. Finally, we employ Grad-CAM to offer visual explanations of our model’s predictions, generating activation heatmaps that highlight areas of input activation throughout the network.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112612"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012462","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, data-driven modeling approaches have gained significant attention across various meteorological applications, particularly in weather forecasting. However, these methods often face challenges in handling extreme weather conditions. In response, we present the GA-SmaAt-GNet model, a novel generative adversarial framework for extreme precipitation nowcasting. This model features a unique SmaAt-GNet generator, an extension of the successful SmaAt-UNet architecture, capable of integrating precipitation masks (binarized precipitation maps) to enhance predictive accuracy. Additionally, GA-SmaAt-GNet incorporates an attention-augmented discriminator inspired by the Pix2Pix architecture. This innovative framework paves the way for generative precipitation nowcasting using multiple data sources. We evaluate the performance of SmaAt-GNet and GA-SmaAt-GNet using real-life precipitation data from The Netherlands, revealing notable improvements in overall performance and for extreme precipitation events compared to other models. Specifically, our proposed architecture demonstrates its main performance gain in summer and autumn, when precipitation intensity is typically at its peak. Furthermore, we conduct uncertainty analysis on the GA-SmaAt-GNet model and the precipitation dataset, providing insights into its predictive capabilities. Finally, we employ Grad-CAM to offer visual explanations of our model’s predictions, generating activation heatmaps that highlight areas of input activation throughout the network.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.