{"title":"A novel Bi-LSTM method fusing current and historical data for tunnelling parameters of shield tunnel","authors":"","doi":"10.1016/j.trgeo.2024.101402","DOIUrl":null,"url":null,"abstract":"<div><div>Reasonable shield tunnelling parameters play a crucial role in controlling ground stability and enhancing tunnelling efficiency. Predicting shield tunnelling parameters before excavation is of paramount importance. A novel deep learning method is introduced, integrating bidirectional long short-term memory (Bi-LSTM) layers, and fully connected (FC) layers to fuse current and historical data for shield tunnelling parameters prediction. Historical data captures the impact of excavated sections on the current predicted ring, while current data considers present conditions. A feature fusion method eliminates dimensional differences between historical and current data. The resulting tensor, encompassing both data types, is fed into the FC layer to generate predictions. The effectiveness of the method is demonstrated by predicting shield cutter head torque for Qingdao Metro Line 4 in China, outperforming traditional Bi-LSTM, MLP and RF methods significantly. Ablation studies further analyze the impact of different component modules and structural parameters on model performance. Overall, this innovative approach offers accurate shield tunnelling parameters prediction, enhancing ground stability and tunnelling efficiency.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221439122400223X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Reasonable shield tunnelling parameters play a crucial role in controlling ground stability and enhancing tunnelling efficiency. Predicting shield tunnelling parameters before excavation is of paramount importance. A novel deep learning method is introduced, integrating bidirectional long short-term memory (Bi-LSTM) layers, and fully connected (FC) layers to fuse current and historical data for shield tunnelling parameters prediction. Historical data captures the impact of excavated sections on the current predicted ring, while current data considers present conditions. A feature fusion method eliminates dimensional differences between historical and current data. The resulting tensor, encompassing both data types, is fed into the FC layer to generate predictions. The effectiveness of the method is demonstrated by predicting shield cutter head torque for Qingdao Metro Line 4 in China, outperforming traditional Bi-LSTM, MLP and RF methods significantly. Ablation studies further analyze the impact of different component modules and structural parameters on model performance. Overall, this innovative approach offers accurate shield tunnelling parameters prediction, enhancing ground stability and tunnelling efficiency.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.