Generalized cohomology theories for algebraic stacks

IF 1.5 1区 数学 Q1 MATHEMATICS
Adeel A. Khan , Charanya Ravi
{"title":"Generalized cohomology theories for algebraic stacks","authors":"Adeel A. Khan ,&nbsp;Charanya Ravi","doi":"10.1016/j.aim.2024.109975","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the stable motivic homotopy category of Voevodsky to the class of scalloped algebraic stacks, and show that it admits the formalism of Grothendieck's six operations. Objects in this category represent generalized cohomology theories for stacks like algebraic K-theory, as well as new examples like genuine motivic cohomology and algebraic cobordism. These cohomology theories admit Gysin maps and satisfy homotopy invariance, localization, and Mayer–Vietoris. For example, we deduce that homotopy K-theory satisfies cdh descent on scalloped stacks. We also prove a fixed point localization formula for torus actions.</div><div>Finally, the construction is contrasted with a “lisse-extended” stable motivic homotopy category, defined for arbitrary stacks: we show for example that lisse-extended motivic cohomology of quotient stacks is computed by the equivariant higher Chow groups of Edidin–Graham, and we also get a good new theory of Borel-equivariant algebraic cobordism. Moreover, the lisse-extended motivic homotopy type is shown to recover all previous constructions of motives of stacks.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109975"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004900","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the stable motivic homotopy category of Voevodsky to the class of scalloped algebraic stacks, and show that it admits the formalism of Grothendieck's six operations. Objects in this category represent generalized cohomology theories for stacks like algebraic K-theory, as well as new examples like genuine motivic cohomology and algebraic cobordism. These cohomology theories admit Gysin maps and satisfy homotopy invariance, localization, and Mayer–Vietoris. For example, we deduce that homotopy K-theory satisfies cdh descent on scalloped stacks. We also prove a fixed point localization formula for torus actions.
Finally, the construction is contrasted with a “lisse-extended” stable motivic homotopy category, defined for arbitrary stacks: we show for example that lisse-extended motivic cohomology of quotient stacks is computed by the equivariant higher Chow groups of Edidin–Graham, and we also get a good new theory of Borel-equivariant algebraic cobordism. Moreover, the lisse-extended motivic homotopy type is shown to recover all previous constructions of motives of stacks.
代数堆栈的广义同调理论
我们把沃沃茨基的稳定动机同调范畴扩展到扇形代数堆栈类,并证明它允许格罗内狄克的六次运算形式主义。这个范畴中的对象代表了堆栈的广义同调理论(如代数 K 理论),以及新的例子(如真正的动机同调和代数共线性)。这些同调理论承认Gysin映射,并满足同调不变性、局部性和Mayer-Vietoris。例如,我们推导出同调 K 理论在扇形堆栈上满足 cdh 下降。最后,我们将这一构造与针对任意堆栈定义的 "lisse-extended "稳定动机同构范畴进行了对比:例如,我们证明商堆栈的 lisse-extended 动机同构是由 Edidin-Graham 的等变高周群来计算的,我们还得到了一个很好的新的 Borel 等变代数共线性理论。此外,我们还证明了利塞扩展动机同调类型可以恢复以前所有的栈动机构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信