Graph-based stock prediction with multisource information and relational data fusion

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qiuyue Zhang , Yunfeng Zhang , Fangxun Bao , Yang Ning , Caiming Zhang , Peide Liu
{"title":"Graph-based stock prediction with multisource information and relational data fusion","authors":"Qiuyue Zhang ,&nbsp;Yunfeng Zhang ,&nbsp;Fangxun Bao ,&nbsp;Yang Ning ,&nbsp;Caiming Zhang ,&nbsp;Peide Liu","doi":"10.1016/j.ins.2024.121561","DOIUrl":null,"url":null,"abstract":"<div><div>With the application of multisource information in different fields, the combination of different types of information, such as numerical data and text information, has become a favourable choice for performing stock market analyses. Despite the rich information provided by multisource data, building structured relationships remains challenging. In addition, some market relationship-based analysis methods use a predefined graph structure as a stock relationship graph, which makes it impossible to sensitively aggregate attribute features, and these methods cannot dynamically update market relationships or relationship strengths. In this paper, we propose a novel dynamic attribute-driven graph attention network incorporating sentiment (AGATS) information, transaction data, and text data. Inspired by behavioural finance, we separately extract sentiment information as a factor of technical indicators, and further realize the early fusion of technical indicators and textual data through tensor fusion. In particular, real-time intramarket dependencies and key attribute information are captured with graph networks, enabling dynamic relationship and relationship strength updates. Experiments conducted on real datasets show that our model is capable of ourperforming previously developed methods in prediction and trading.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121561"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014750","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the application of multisource information in different fields, the combination of different types of information, such as numerical data and text information, has become a favourable choice for performing stock market analyses. Despite the rich information provided by multisource data, building structured relationships remains challenging. In addition, some market relationship-based analysis methods use a predefined graph structure as a stock relationship graph, which makes it impossible to sensitively aggregate attribute features, and these methods cannot dynamically update market relationships or relationship strengths. In this paper, we propose a novel dynamic attribute-driven graph attention network incorporating sentiment (AGATS) information, transaction data, and text data. Inspired by behavioural finance, we separately extract sentiment information as a factor of technical indicators, and further realize the early fusion of technical indicators and textual data through tensor fusion. In particular, real-time intramarket dependencies and key attribute information are captured with graph networks, enabling dynamic relationship and relationship strength updates. Experiments conducted on real datasets show that our model is capable of ourperforming previously developed methods in prediction and trading.
利用多源信息和关系数据融合进行基于图表的股票预测
随着多源信息在不同领域的应用,数字数据和文本信息等不同类型信息的组合已成为进行股市分析的有利选择。尽管多源数据提供了丰富的信息,但建立结构化关系仍具有挑战性。此外,一些基于市场关系的分析方法使用预定义的图结构作为股票关系图,无法灵敏地聚合属性特征,而且这些方法无法动态更新市场关系或关系强度。在本文中,我们提出了一种新颖的动态属性驱动图注意力网络,其中包含情感(AGATS)信息、交易数据和文本数据。受行为金融学的启发,我们将情绪信息作为技术指标的一个因子单独提取出来,并通过张量融合进一步实现了技术指标和文本数据的早期融合。特别是通过图网络实时捕捉市场内的依赖关系和关键属性信息,实现动态关系和关系强度更新。在真实数据集上进行的实验表明,我们的模型能够在预测和交易方面优于之前开发的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信