David A. Sherman , Justin Rush , Neal R. Glaviano , Grant E. Norte
{"title":"Knee joint pathology and efferent pathway dysfunction: Mapping muscle inhibition from motor cortex to muscle force","authors":"David A. Sherman , Justin Rush , Neal R. Glaviano , Grant E. Norte","doi":"10.1016/j.msksp.2024.103204","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Dysfunction in efferent pathways after knee pathology is tied to long-term impairments in quadriceps and hamstrings muscle performance, daily function, and health-related quality of life. Understanding the underlying etiology is crucial for effective treatment and prevention of poor outcomes, such as post-traumatic osteoarthritis or joint replacement.</div></div><div><h3>Objectives</h3><div>To synthesize recent evidence of efferent pathway dysfunction (i.e., motor cortex, motor units) among individuals with knee pathology.</div></div><div><h3>Design</h3><div>Commentary.</div></div><div><h3>Method</h3><div>We summarize the current literature investigating the motor cortex, corticospinal tract, and motoneuron pool in individuals with three common knee pathologies: anterior cruciate ligament (ACL) injury, anterior knee pain (AKP), and knee osteoarthritis (OA). To offer a complete perspective, we draw from studies applying a range of neuroimaging and neurophysiologic techniques.</div></div><div><h3>Results</h3><div>Adaptations within the motor cortices, corticospinal tract, and motoneuron pool are present in those with knee pathology and underline impairments in quadriceps and hamstrings muscle function. Each pathology has evidence of altered motor system excitability and reduced volitional muscle activation and force-generating capacity, but few impairments were common across ACL injury, AKP, and OA studies. These findings underscore the central role of the motor cortex and motor unit behavior in the long-term outcomes of individuals with knee pathology.</div></div><div><h3>Conclusions</h3><div>Adaptations in the efferent pathways underlie persistent muscle dysfunction across three common knee pathologies. This review provides an overview of these changes and summarizes key findings from neurophysiology and neuroimaging studies, offering direction for future research and clinical application in the rehabilitation of joint injuries.</div></div>","PeriodicalId":56036,"journal":{"name":"Musculoskeletal Science and Practice","volume":"74 ","pages":"Article 103204"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Musculoskeletal Science and Practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468781224002996","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Dysfunction in efferent pathways after knee pathology is tied to long-term impairments in quadriceps and hamstrings muscle performance, daily function, and health-related quality of life. Understanding the underlying etiology is crucial for effective treatment and prevention of poor outcomes, such as post-traumatic osteoarthritis or joint replacement.
Objectives
To synthesize recent evidence of efferent pathway dysfunction (i.e., motor cortex, motor units) among individuals with knee pathology.
Design
Commentary.
Method
We summarize the current literature investigating the motor cortex, corticospinal tract, and motoneuron pool in individuals with three common knee pathologies: anterior cruciate ligament (ACL) injury, anterior knee pain (AKP), and knee osteoarthritis (OA). To offer a complete perspective, we draw from studies applying a range of neuroimaging and neurophysiologic techniques.
Results
Adaptations within the motor cortices, corticospinal tract, and motoneuron pool are present in those with knee pathology and underline impairments in quadriceps and hamstrings muscle function. Each pathology has evidence of altered motor system excitability and reduced volitional muscle activation and force-generating capacity, but few impairments were common across ACL injury, AKP, and OA studies. These findings underscore the central role of the motor cortex and motor unit behavior in the long-term outcomes of individuals with knee pathology.
Conclusions
Adaptations in the efferent pathways underlie persistent muscle dysfunction across three common knee pathologies. This review provides an overview of these changes and summarizes key findings from neurophysiology and neuroimaging studies, offering direction for future research and clinical application in the rehabilitation of joint injuries.
期刊介绍:
Musculoskeletal Science & Practice, international journal of musculoskeletal physiotherapy, is a peer-reviewed international journal (previously Manual Therapy), publishing high quality original research, review and Masterclass articles that contribute to improving the clinical understanding of appropriate care processes for musculoskeletal disorders. The journal publishes articles that influence or add to the body of evidence on diagnostic and therapeutic processes, patient centered care, guidelines for musculoskeletal therapeutics and theoretical models that support developments in assessment, diagnosis, clinical reasoning and interventions.