Tianyu Zhao , Yue Zhou , Ruijun Shi , Zhoujian Cao , Zhixiang Ren
{"title":"GWAI: Artificial intelligence platform for enhanced gravitational wave data analysis","authors":"Tianyu Zhao , Yue Zhou , Ruijun Shi , Zhoujian Cao , Zhixiang Ren","doi":"10.1016/j.softx.2024.101930","DOIUrl":null,"url":null,"abstract":"<div><div>Gravitational wave (GW) astronomy has opened new frontiers in understanding the cosmos, while the integration of artificial intelligence (AI) in science promises to revolutionize data analysis methodologies. However, a significant gap exists, as there is currently no dedicated platform that enables scientists to develop, test, and evaluate AI algorithms efficiently for GW data analysis. To address this gap, we introduce GWAI, a pioneering AI-centered software platform designed for GW data analysis. GWAI contains a three-layered architecture that emphasizes simplicity, modularity, and flexibility, covering the entire analysis pipeline. GWAI aims to accelerate scientific discoveries, bridging the gap between advanced AI techniques and astrophysical research.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101930"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational wave (GW) astronomy has opened new frontiers in understanding the cosmos, while the integration of artificial intelligence (AI) in science promises to revolutionize data analysis methodologies. However, a significant gap exists, as there is currently no dedicated platform that enables scientists to develop, test, and evaluate AI algorithms efficiently for GW data analysis. To address this gap, we introduce GWAI, a pioneering AI-centered software platform designed for GW data analysis. GWAI contains a three-layered architecture that emphasizes simplicity, modularity, and flexibility, covering the entire analysis pipeline. GWAI aims to accelerate scientific discoveries, bridging the gap between advanced AI techniques and astrophysical research.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.