On star-homogeneous-graded polynomial identities of upper triangular matrices over an arbitrary field

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.032
Thiago Castilho de Mello , Felipe Yukihide Yasumura
{"title":"On star-homogeneous-graded polynomial identities of upper triangular matrices over an arbitrary field","authors":"Thiago Castilho de Mello ,&nbsp;Felipe Yukihide Yasumura","doi":"10.1016/j.jalgebra.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>We study the graded polynomial identities with a homogeneous involution on the algebra of upper triangular matrices endowed with a fine group grading. We compute their polynomial identities and a basis of the relatively free algebra, considering an arbitrary base field. We obtain the asymptotic behaviour of the codimension sequence when the characteristic of the base field is zero. As a consequence, we compute the exponent and the second exponent of the same algebra endowed with any group grading and any homogeneous involution.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the graded polynomial identities with a homogeneous involution on the algebra of upper triangular matrices endowed with a fine group grading. We compute their polynomial identities and a basis of the relatively free algebra, considering an arbitrary base field. We obtain the asymptotic behaviour of the codimension sequence when the characteristic of the base field is zero. As a consequence, we compute the exponent and the second exponent of the same algebra endowed with any group grading and any homogeneous involution.
分享
查看原文
关于任意域上上三角矩阵的星形同质分级多项式特性
我们研究的是上三角矩阵代数上具有同质内卷的分级多项式同余。考虑到任意基域,我们计算了它们的多项式同分异构体和相对自由代数的基。当基域特征为零时,我们得到了码度序列的渐近行为。因此,我们计算了具有任意群分级和任意同质内卷的同一代数的指数和第二指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信