Counting maximal isotropic subbundles of orthogonal bundles over a curve

Pub Date : 2024-10-10 DOI:10.1016/j.jalgebra.2024.08.037
Daewoong Cheong , Insong Choe , George H. Hitching
{"title":"Counting maximal isotropic subbundles of orthogonal bundles over a curve","authors":"Daewoong Cheong ,&nbsp;Insong Choe ,&nbsp;George H. Hitching","doi":"10.1016/j.jalgebra.2024.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>C</em> be a smooth projective curve and <em>V</em> an orthogonal bundle over <em>C</em>. Let <span><math><msub><mrow><mi>IQ</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be the isotropic Quot scheme parameterizing degree <em>e</em> isotropic subsheaves of maximal rank in <em>V</em>. We give a closed formula for intersection numbers on components of <span><math><msub><mrow><mi>IQ</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> whose generic element is saturated. As a special case, for <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>, we compute the number of isotropic subbundles of maximal rank and degree of a general stable orthogonal bundle in most cases when this is finite. This is an orthogonal analogue of Holla's enumeration of maximal subbundles in <span><span>[16]</span></span>, and of the symplectic case studied in <span><span>[7]</span></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400512X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let C be a smooth projective curve and V an orthogonal bundle over C. Let IQe(V) be the isotropic Quot scheme parameterizing degree e isotropic subsheaves of maximal rank in V. We give a closed formula for intersection numbers on components of IQe(V) whose generic element is saturated. As a special case, for g2, we compute the number of isotropic subbundles of maximal rank and degree of a general stable orthogonal bundle in most cases when this is finite. This is an orthogonal analogue of Holla's enumeration of maximal subbundles in [16], and of the symplectic case studied in [7].
分享
查看原文
计算曲线上正交束的最大各向同性子束
设 C 是光滑投影曲线,V 是 C 上的正交束。设 IQe(V) 是参数化 V 中最大秩的 e 等向子束的等向 Quot 方案。我们给出了 IQe(V) 中通元饱和的分量的交集数的封闭公式。作为一种特例,对于 g≥2,我们计算了一般稳定正交束的最大秩和度的各向同性子束的数量,在大多数情况下这是有限的。这是霍拉在[16]中枚举最大子束的正交类似方法,也是[7]中研究的交映情况的类似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信