{"title":"A novel DDoS detection method using multi-layer stacking in SDN environment","authors":"Tasnim Alasali, Omar Dakkak","doi":"10.1016/j.compeleceng.2024.109769","DOIUrl":null,"url":null,"abstract":"<div><div>Software Defined Network (SDN) offers virtualized services compatible with infrastructure hosted computing, presenting a flexible, adaptive, and economical network architecture. Switches used in SDN prioritize packet matching in flow tables above packet processing, leaving them open to Denial of Service (DoS) attacks. These attacks, exemplified by Distributed Denial of Service Attacks (DDoS), target a victim while using many infected workstations at once. Due to its scalability and programmability, SDN is being used more and more for network management. However, it has specific security concerns, such as the controller’s susceptibility to cyberattacks, which might result in a single point of failure and network-wide risks. This study proposes a novel DDoS prediction model by developing stacking classifier model consisting of multiple base classifiers for an SDN environment. The proposed model is built on stacking several classifiers at the base level and the Meta level, which mixes varied or heterogeneous learners to provide reliable model results. The findings demonstrate that the proposed stacking model outperforms other existing models with respect to accuracy, sensitivity, specificity, precision, and F1 score. Finally, the stacking classifier model is evaluated in terms of binary classification. The evaluation shows the highest AUC of 0.9537 whereas Random Forest, Decision Tree, and Logistic Regression achieve AUC values around 0.93–0.95.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109769"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006967","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Software Defined Network (SDN) offers virtualized services compatible with infrastructure hosted computing, presenting a flexible, adaptive, and economical network architecture. Switches used in SDN prioritize packet matching in flow tables above packet processing, leaving them open to Denial of Service (DoS) attacks. These attacks, exemplified by Distributed Denial of Service Attacks (DDoS), target a victim while using many infected workstations at once. Due to its scalability and programmability, SDN is being used more and more for network management. However, it has specific security concerns, such as the controller’s susceptibility to cyberattacks, which might result in a single point of failure and network-wide risks. This study proposes a novel DDoS prediction model by developing stacking classifier model consisting of multiple base classifiers for an SDN environment. The proposed model is built on stacking several classifiers at the base level and the Meta level, which mixes varied or heterogeneous learners to provide reliable model results. The findings demonstrate that the proposed stacking model outperforms other existing models with respect to accuracy, sensitivity, specificity, precision, and F1 score. Finally, the stacking classifier model is evaluated in terms of binary classification. The evaluation shows the highest AUC of 0.9537 whereas Random Forest, Decision Tree, and Logistic Regression achieve AUC values around 0.93–0.95.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.