Wenjian Guo , Jinyu Gong , Li’an Zhu , Yicong Ye , Shifeng Zhang , Shuxin Bai
{"title":"Oxidation and ablation resistance of (TiZrHf)C medium-entropy ceramic coating on C/C composite constructed in-situ at low temperature down to 900°C","authors":"Wenjian Guo , Jinyu Gong , Li’an Zhu , Yicong Ye , Shifeng Zhang , Shuxin Bai","doi":"10.1016/j.jeurceramsoc.2024.116976","DOIUrl":null,"url":null,"abstract":"<div><div>The low-cost construction of ultra-high temperature high/medium-entropy ceramic coatings is pivotal for advancing their engineering applications. The study successfully prepared (TiZrHf)C medium-entropy ceramic coatings on C/C composite surfaces using an in-situ molten salt disproportionation reaction at temperatures as low as 900°C. The (TiZrHf)C coatings, approximately 20 μm thick, showed uniform distribution of Ti, Zr, and Hf, typical of medium-entropy ceramics. The process entails Hf reducing Zr⁴⁺ and Ti⁴⁺ to divalent states, which then disproportionate and react with carbon to form the coatings. High-temperature oxidation tests revealed larger oxide grain sizes and dense boundaries in coatings with higher Ti content, indicating superior oxidation resistance. Additionally, ablation tests demonstrated that a suitable amount of liquid-phase TiO₂ formed on the composite surface improves ablation resistance by stabilizing the oxide layer. This cost-effective, highly designable method promotes medium/high-entropy ultra-high temperature ceramics' engineering application.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116976"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008495","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The low-cost construction of ultra-high temperature high/medium-entropy ceramic coatings is pivotal for advancing their engineering applications. The study successfully prepared (TiZrHf)C medium-entropy ceramic coatings on C/C composite surfaces using an in-situ molten salt disproportionation reaction at temperatures as low as 900°C. The (TiZrHf)C coatings, approximately 20 μm thick, showed uniform distribution of Ti, Zr, and Hf, typical of medium-entropy ceramics. The process entails Hf reducing Zr⁴⁺ and Ti⁴⁺ to divalent states, which then disproportionate and react with carbon to form the coatings. High-temperature oxidation tests revealed larger oxide grain sizes and dense boundaries in coatings with higher Ti content, indicating superior oxidation resistance. Additionally, ablation tests demonstrated that a suitable amount of liquid-phase TiO₂ formed on the composite surface improves ablation resistance by stabilizing the oxide layer. This cost-effective, highly designable method promotes medium/high-entropy ultra-high temperature ceramics' engineering application.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.