{"title":"Microstructure, MAO performance, interfacial characteristics and corrosion behavior of FSW joint of Al–Mg-Sc alloy","authors":"","doi":"10.1016/j.matchemphys.2024.130046","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructure evolution, micro-arc oxidation (MAO) performance, and corrosion behavior of Al–Mg-Sc alloy friction stir welded (FSW) joint were investigated. The microstructure observations indicated that compared with the base metal (BM), the stirring zone (SZ) and thermo-mechanical affected zone (TMAZ) showed notable grain defects and an enormous number of high angle grain boundaries (HAGBs). Additionally, a more conspicuous presence of non-uniform recrystallized grains and HAGBs was noticed in the thickness direction within the SZ. FSW process induced the precipitation of Al<sub>3</sub>Mg<sub>2</sub> (β phase) at grain boundaries in the heat-affected zone (HAZ) of joint. The microstructural changes and precipitation induced by the FSW process influenced the electrical conductivity, resulting in the differences in micro-arc discharge in various zones of the FSW joint in MAO process, which in turn affected the thickness, porosity, and corrosion resistance of MAO ceramic film. HRTEM observation suggested that a transition layer composed of nanocrystalline and amorphous Al<sub>2</sub>O<sub>3</sub> with average thickness of 2–4 nm was found at the film/substrate interface. Electrochemical tests suggested that a heterogeneous structure in various regions of FSW joint resulted in varying susceptibility to localized corrosion. HAZ/TMAZ had the worst anti-corrosion performance. After MAO treatment, the anti-corrosion performance of SZ and HAZ/TMAZ in FSW joint was significantly improved, especially SZ.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842401174X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure evolution, micro-arc oxidation (MAO) performance, and corrosion behavior of Al–Mg-Sc alloy friction stir welded (FSW) joint were investigated. The microstructure observations indicated that compared with the base metal (BM), the stirring zone (SZ) and thermo-mechanical affected zone (TMAZ) showed notable grain defects and an enormous number of high angle grain boundaries (HAGBs). Additionally, a more conspicuous presence of non-uniform recrystallized grains and HAGBs was noticed in the thickness direction within the SZ. FSW process induced the precipitation of Al3Mg2 (β phase) at grain boundaries in the heat-affected zone (HAZ) of joint. The microstructural changes and precipitation induced by the FSW process influenced the electrical conductivity, resulting in the differences in micro-arc discharge in various zones of the FSW joint in MAO process, which in turn affected the thickness, porosity, and corrosion resistance of MAO ceramic film. HRTEM observation suggested that a transition layer composed of nanocrystalline and amorphous Al2O3 with average thickness of 2–4 nm was found at the film/substrate interface. Electrochemical tests suggested that a heterogeneous structure in various regions of FSW joint resulted in varying susceptibility to localized corrosion. HAZ/TMAZ had the worst anti-corrosion performance. After MAO treatment, the anti-corrosion performance of SZ and HAZ/TMAZ in FSW joint was significantly improved, especially SZ.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.