{"title":"Analysis of the Circumferential Wave Dispersion of an Acoustic Signal Backscattered by a Porous Tube: Cortical Bone","authors":"Rizlane Babach, Mountassir Lahcen, Nounah Hassan","doi":"10.1134/S1061830924601880","DOIUrl":null,"url":null,"abstract":"<p>In this study, the elastic properties of porous cylinders are evaluated using a nondestructive method based on ultrasonic wave propagation. In the scientific community, the elastic properties of materials play a crucial role. Measuring these properties can reveal valuable details about the mechanical properties of these materials. The scattering of a plane acoustic wave has received a great deal of attention from researchers due to its growing interest in many disciplines. Many authors have studied the acoustic scattering by means of cylindrical components (e.g. tubes, cylinders, etc.). This study shows how to analyze the distribution of circumferential waves with increasing porosity using the modal view of the waves propagating around the circumference of a cortical bone. This technique is applied on a signal backscattered by an porous tube of radius ratio <i>b</i>/<i>a</i> = 0.7 (a is the external radius and b is the internal radius). Our investigation revealed a correlation between bone porosity, fluid saturation, and pore radius, and changes in elastic properties. The Schoch model was developed to investigate the propagation of ultrasonic waves in porous bone. The results demonstrate the effectiveness of this approach for acoustic characterization and describing the impact of osteoporosis on bone elasticity.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924601880","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the elastic properties of porous cylinders are evaluated using a nondestructive method based on ultrasonic wave propagation. In the scientific community, the elastic properties of materials play a crucial role. Measuring these properties can reveal valuable details about the mechanical properties of these materials. The scattering of a plane acoustic wave has received a great deal of attention from researchers due to its growing interest in many disciplines. Many authors have studied the acoustic scattering by means of cylindrical components (e.g. tubes, cylinders, etc.). This study shows how to analyze the distribution of circumferential waves with increasing porosity using the modal view of the waves propagating around the circumference of a cortical bone. This technique is applied on a signal backscattered by an porous tube of radius ratio b/a = 0.7 (a is the external radius and b is the internal radius). Our investigation revealed a correlation between bone porosity, fluid saturation, and pore radius, and changes in elastic properties. The Schoch model was developed to investigate the propagation of ultrasonic waves in porous bone. The results demonstrate the effectiveness of this approach for acoustic characterization and describing the impact of osteoporosis on bone elasticity.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).