Classification of protected grassland habitats using deep learning architectures on Sentinel-2 satellite imagery data

IF 7.6 Q1 REMOTE SENSING
Gabriel Díaz-Ireland , Derya Gülçin , Aida López-Sánchez , Eduardo Pla , John Burton , Javier Velázquez
{"title":"Classification of protected grassland habitats using deep learning architectures on Sentinel-2 satellite imagery data","authors":"Gabriel Díaz-Ireland ,&nbsp;Derya Gülçin ,&nbsp;Aida López-Sánchez ,&nbsp;Eduardo Pla ,&nbsp;John Burton ,&nbsp;Javier Velázquez","doi":"10.1016/j.jag.2024.104221","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effectiveness of five deep learning models—ViTb-19, SwinV2-t, VGG-16, ResNet-50, and DenseNet-121—in distinguishing different vegetation types in the protected grasslands of Castilla y León region, Spain, following the guidelines of the Natura 92/43/CEE directive. Among the models, ResNet-50 achieved the highest weighted overall accuracy (OA) of 0.95, closely followed by SwinV2-t with an OA of 0.94, demonstrating their strong ability to detect complex patterns in satellite imagery. DenseNet-121 also performed competitively with a weighted OA of 0.93, while ViTb-19 and VGG-16 showed slightly lower performance. SwinV2-t, a transformer-based model, outperformed traditional CNN architectures in data-rich classes but faced challenges in classifying habitats with limited representation. Consequently, this study identifies these challenges that conventional transformer architectures pose in classifying certain habitats with limited representation and intricate features. Highlighting the advantages of deep learning technologies for environmental monitoring and conservation, the study provides important insights for adjusting neural network architectures for effective habitat classification. This suggests the necessity of selecting appropriate architectures such as SwinV2-t and ResNet50 to to effectively address the intricate requirements of satellite imagery analysis.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104221"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the effectiveness of five deep learning models—ViTb-19, SwinV2-t, VGG-16, ResNet-50, and DenseNet-121—in distinguishing different vegetation types in the protected grasslands of Castilla y León region, Spain, following the guidelines of the Natura 92/43/CEE directive. Among the models, ResNet-50 achieved the highest weighted overall accuracy (OA) of 0.95, closely followed by SwinV2-t with an OA of 0.94, demonstrating their strong ability to detect complex patterns in satellite imagery. DenseNet-121 also performed competitively with a weighted OA of 0.93, while ViTb-19 and VGG-16 showed slightly lower performance. SwinV2-t, a transformer-based model, outperformed traditional CNN architectures in data-rich classes but faced challenges in classifying habitats with limited representation. Consequently, this study identifies these challenges that conventional transformer architectures pose in classifying certain habitats with limited representation and intricate features. Highlighting the advantages of deep learning technologies for environmental monitoring and conservation, the study provides important insights for adjusting neural network architectures for effective habitat classification. This suggests the necessity of selecting appropriate architectures such as SwinV2-t and ResNet50 to to effectively address the intricate requirements of satellite imagery analysis.
在哨兵-2 号卫星图像数据上使用深度学习架构对受保护草原生境进行分类
本研究考察了五种深度学习模型--ViTb-19、SwinV2-t、VGG-16、ResNet-50 和 DenseNet-121 在按照 Natura 92/43/CEE 指令区分西班牙卡斯蒂利亚莱昂地区受保护草原的不同植被类型方面的有效性。在这些模型中,ResNet-50 的加权总体准确度(OA)最高,达到 0.95,紧随其后的是 SwinV2-t,OA 为 0.94,这表明它们具有很强的探测卫星图像中复杂模式的能力。DenseNet-121 的加权 OA 值为 0.93,也具有很强的竞争力,而 ViTb-19 和 VGG-16 的表现则稍逊一筹。基于变压器的 SwinV2-t 模型在数据丰富的类别中表现优于传统的 CNN 架构,但在对代表性有限的生境进行分类时却面临挑战。因此,本研究指出了传统变压器架构在对某些表征有限、特征复杂的生境进行分类时所面临的挑战。本研究强调了深度学习技术在环境监测和保护方面的优势,为调整神经网络架构以实现有效的生境分类提供了重要启示。这表明有必要选择合适的架构,如 SwinV2-t 和 ResNet50,以有效满足卫星图像分析的复杂要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信