Yiran Zhang , Zhongxu Hu , Peng Hang , Shanhe Lou , Chen Lv
{"title":"Human–machine cooperative decision-making and planning for automated vehicles using spatial projection of hand gestures","authors":"Yiran Zhang , Zhongxu Hu , Peng Hang , Shanhe Lou , Chen Lv","doi":"10.1016/j.aei.2024.102864","DOIUrl":null,"url":null,"abstract":"<div><div>Significant challenges in perception, prediction, and decision-making within self-driving systems remain inadequately addressed. Concurrently, the advancement of autonomous driving technologies reduces driver engagement, inadvertently eroding their proficiency. Integrating human cognitive flexibility and experiential insight with the machine’s precision and reliability offers a promising approach for the transitional phase towards fully automated driving. This study presents a human-machine collaboration approach to enhance the highly automated vehicles’ high-level flexibility and personalization attribute without the need for passengers’ prior driving experience. Firstly, we propose a tactical human–vehicle collaboration framework leveraging the hand-landmark extraction algorithm and augmented visual feedback. The proposed vision-based interface projects the gesture onto the ground and feeds it back to the driver through the augmented reality head-up display (AR-HUD) for intuitive interaction. The projection offers strategic decision-making guidance and planning recommendations for the vehicle. Utilizing these suggestions, the automation algorithm efficiently manages the remaining tasks, including collision avoidance and adherence to traffic regulations. This approach minimizes the driver’s engagement in routine driving tasks and negates the need for driving skills. Incorporating cooperative game theory, the methodology optimally balances personalization with system robustness. Finally, we compare our approach with conventional manual driving schemes that both can assist the self-driving car in avoiding unknown obstacles and reaching the personalized goal. Results demonstrate that the proposed decision-making and planning collaboration scheme significantly reduces human physical burdens without compromising driving performance and driver mental workloads.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102864"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005123","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Significant challenges in perception, prediction, and decision-making within self-driving systems remain inadequately addressed. Concurrently, the advancement of autonomous driving technologies reduces driver engagement, inadvertently eroding their proficiency. Integrating human cognitive flexibility and experiential insight with the machine’s precision and reliability offers a promising approach for the transitional phase towards fully automated driving. This study presents a human-machine collaboration approach to enhance the highly automated vehicles’ high-level flexibility and personalization attribute without the need for passengers’ prior driving experience. Firstly, we propose a tactical human–vehicle collaboration framework leveraging the hand-landmark extraction algorithm and augmented visual feedback. The proposed vision-based interface projects the gesture onto the ground and feeds it back to the driver through the augmented reality head-up display (AR-HUD) for intuitive interaction. The projection offers strategic decision-making guidance and planning recommendations for the vehicle. Utilizing these suggestions, the automation algorithm efficiently manages the remaining tasks, including collision avoidance and adherence to traffic regulations. This approach minimizes the driver’s engagement in routine driving tasks and negates the need for driving skills. Incorporating cooperative game theory, the methodology optimally balances personalization with system robustness. Finally, we compare our approach with conventional manual driving schemes that both can assist the self-driving car in avoiding unknown obstacles and reaching the personalized goal. Results demonstrate that the proposed decision-making and planning collaboration scheme significantly reduces human physical burdens without compromising driving performance and driver mental workloads.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.