{"title":"A local-global principle for similarities over function fields of p-adic curves","authors":"Jack Barlow","doi":"10.1016/j.jalgebra.2024.08.038","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>∈</mo><mi>N</mi></math></span> be a prime with <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>, and let <em>K</em> be a <em>p</em>-adic field. Let <em>F</em> be the function field of a curve over <em>K</em>. Let <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> be the set of all divisorial discrete valuations of <em>F</em>. In this paper, we ask whether the Hasse principle holds for semisimple adjoint linear algebraic groups over <em>F</em>. We give a positive answer to this question for a class of adjoint classical groups.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a prime with , and let K be a p-adic field. Let F be the function field of a curve over K. Let be the set of all divisorial discrete valuations of F. In this paper, we ask whether the Hasse principle holds for semisimple adjoint linear algebraic groups over F. We give a positive answer to this question for a class of adjoint classical groups.