{"title":"Effects of N, O, S on generalized stacking fault energies and dislocation movements in γ-Ni and γ′-Ni3Al","authors":"Xinyue Zhang, Xiaohua Min, Chao Lu","doi":"10.1016/j.comptc.2024.114909","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of interstitial atoms (N, O and S) on generalized stacking fault energies in the γ-Ni and γ′-Ni<sub>3</sub>Al were systematically elucidated by first-principles calculations. N, O and S atoms had the preference for octahedral interstitial sites in γ phase. N and S atoms had the preference for octahedral interstitial site with 6Ni atoms in γ′ phase, while O atom had the preference for octahedral interstitial site with 2Al4Ni atoms. With the addition of adopted atoms, the intrinsic stacking fault energy in γ phase was decreased and the anti-phase boundary energy in γ′ phase was increased, which were attributed to the charge redistribution between the adopted atoms and neighbouring Ni atoms. The addition of N, S, especially O, hindered the extended dislocation movement and enhanced its formation probability. The addition of O and S atoms significantly enhanced the formation probability of Kear-Wilsdorf dislocation lock in γ′ phase, while the addition of N slightly reduced it.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114909"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004481","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of interstitial atoms (N, O and S) on generalized stacking fault energies in the γ-Ni and γ′-Ni3Al were systematically elucidated by first-principles calculations. N, O and S atoms had the preference for octahedral interstitial sites in γ phase. N and S atoms had the preference for octahedral interstitial site with 6Ni atoms in γ′ phase, while O atom had the preference for octahedral interstitial site with 2Al4Ni atoms. With the addition of adopted atoms, the intrinsic stacking fault energy in γ phase was decreased and the anti-phase boundary energy in γ′ phase was increased, which were attributed to the charge redistribution between the adopted atoms and neighbouring Ni atoms. The addition of N, S, especially O, hindered the extended dislocation movement and enhanced its formation probability. The addition of O and S atoms significantly enhanced the formation probability of Kear-Wilsdorf dislocation lock in γ′ phase, while the addition of N slightly reduced it.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.