Jiaqi Chen , Shuhang Han , Donghai Tian , Changzhen Hu
{"title":"IMUNE: A novel evolutionary algorithm for influence maximization in UAV networks","authors":"Jiaqi Chen , Shuhang Han , Donghai Tian , Changzhen Hu","doi":"10.1016/j.jnca.2024.104038","DOIUrl":null,"url":null,"abstract":"<div><div>In a network, influence maximization addresses identifying an optimal set of nodes to initiate influence propagation, thereby maximizing the influence spread. Current approaches for influence maximization encounter limitations in accuracy and efficiency. Furthermore, most existing methods are aimed at the IC (Independent Cascade) diffusion model, and few solutions concern dynamic networks. In this study, we focus on dynamic networks consisting of UAV (Unmanned Aerial Vehicle) clusters that perform coverage tasks and introduce IMUNE, an evolutionary algorithm for influence maximization in UAV networks. We first generate dynamic networks that simulate UAV coverage tasks and give the representation of dynamic networks. Novel fitness functions in the evolutionary algorithm are designed to estimate the influence ability of a set of seed nodes in a dynamic process. On this basis, an integrated fitness function is proposed to fit both the IC and SI (Susceptible–Infected) models. IMUNE can find seed nodes for maximizing influence spread in dynamic UAV networks with different diffusion models through the improvements in fitness functions and search strategies. Experimental results on UAV network datasets show the effectiveness and efficiency of the IMUNE algorithm in solving influence maximization problems.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104038"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002157","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In a network, influence maximization addresses identifying an optimal set of nodes to initiate influence propagation, thereby maximizing the influence spread. Current approaches for influence maximization encounter limitations in accuracy and efficiency. Furthermore, most existing methods are aimed at the IC (Independent Cascade) diffusion model, and few solutions concern dynamic networks. In this study, we focus on dynamic networks consisting of UAV (Unmanned Aerial Vehicle) clusters that perform coverage tasks and introduce IMUNE, an evolutionary algorithm for influence maximization in UAV networks. We first generate dynamic networks that simulate UAV coverage tasks and give the representation of dynamic networks. Novel fitness functions in the evolutionary algorithm are designed to estimate the influence ability of a set of seed nodes in a dynamic process. On this basis, an integrated fitness function is proposed to fit both the IC and SI (Susceptible–Infected) models. IMUNE can find seed nodes for maximizing influence spread in dynamic UAV networks with different diffusion models through the improvements in fitness functions and search strategies. Experimental results on UAV network datasets show the effectiveness and efficiency of the IMUNE algorithm in solving influence maximization problems.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.