Higher Chow groups with finite coefficients and refined unramified cohomology

IF 1.5 1区 数学 Q1 MATHEMATICS
Kees Kok , Lin Zhou
{"title":"Higher Chow groups with finite coefficients and refined unramified cohomology","authors":"Kees Kok ,&nbsp;Lin Zhou","doi":"10.1016/j.aim.2024.109972","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we show that Bloch's higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder's refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109972"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004870","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we show that Bloch's higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder's refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.
具有有限系数的高等周群与精制无ramified同调
在本文中,我们证明了布洛赫在一个域上的准投影等维方案的具有有限系数的高循环类映射自然地适合于涉及施赖埃德的精致无克拉姆同调的长精确序列。我们还证明了细化无克拉姆同调满足局部化序列。由此,我们最终猜想精炼无克拉姆同调是一种动机同调理论,并解释了这与上述结果的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信