Direct MultiSearch optimization of TPMS scaffolds for bone tissue engineering

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
T.H.V. Pires , J.F.A. Madeira , A.P.G. Castro , P.R. Fernandes
{"title":"Direct MultiSearch optimization of TPMS scaffolds for bone tissue engineering","authors":"T.H.V. Pires ,&nbsp;J.F.A. Madeira ,&nbsp;A.P.G. Castro ,&nbsp;P.R. Fernandes","doi":"10.1016/j.cmpb.2024.108461","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Scaffolds designed for tissue engineering must consider multiple parameters, namely the permeability of the design and the wall shear stress experienced by the cells on the scaffold surface. However, these parameters are not independent from each other, with changes that improve wall shear stress, negatively impacting permeability and vice versa. This study introduces a novel multi-objective optimization framework using Direct MultiSearch (DMS) to design triply periodic minimal surface (TPMS) scaffolds for bone tissue engineering.</div></div><div><h3>Method</h3><div>The optimization algorithm focused on maximizing the permeability of the scaffolds and obtaining a desired value of average wall shear stress (which ranges between the values that promote osteogenic differentiation of 0.1 mPa and 10 mPa). Multiple fluid inlet velocities and target wall shear stress were analyzed. The DMS method successfully generated Pareto fronts for each configuration, enabling the selection of optimized scaffolds based on specific structural requirements.</div></div><div><h3>Results</h3><div>The findings reveal that increasing the target wall shear stress results in a greater number of non-dominated points on the Pareto front, highlighting a more robust optimization process. Additionally, it was also demonstrated that the tested Schwartz diamond scaffolds had a better permeability-wall shear stress relation when compared to Schoen gyroid geometries.</div></div><div><h3>Conclusions</h3><div>Direct MultiSearch was proven as an effective tool to aid in the design of tissue engineering scaffolds. This adaptable optimization framework has potential applications beyond bone tissue engineering, including cartilage tissue differentiation.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108461"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Scaffolds designed for tissue engineering must consider multiple parameters, namely the permeability of the design and the wall shear stress experienced by the cells on the scaffold surface. However, these parameters are not independent from each other, with changes that improve wall shear stress, negatively impacting permeability and vice versa. This study introduces a novel multi-objective optimization framework using Direct MultiSearch (DMS) to design triply periodic minimal surface (TPMS) scaffolds for bone tissue engineering.

Method

The optimization algorithm focused on maximizing the permeability of the scaffolds and obtaining a desired value of average wall shear stress (which ranges between the values that promote osteogenic differentiation of 0.1 mPa and 10 mPa). Multiple fluid inlet velocities and target wall shear stress were analyzed. The DMS method successfully generated Pareto fronts for each configuration, enabling the selection of optimized scaffolds based on specific structural requirements.

Results

The findings reveal that increasing the target wall shear stress results in a greater number of non-dominated points on the Pareto front, highlighting a more robust optimization process. Additionally, it was also demonstrated that the tested Schwartz diamond scaffolds had a better permeability-wall shear stress relation when compared to Schoen gyroid geometries.

Conclusions

Direct MultiSearch was proven as an effective tool to aid in the design of tissue engineering scaffolds. This adaptable optimization framework has potential applications beyond bone tissue engineering, including cartilage tissue differentiation.
直接多搜索优化用于骨组织工程的 TPMS 支架
背景设计用于组织工程的支架必须考虑多个参数,即设计的渗透性和支架表面细胞所承受的壁剪应力。然而,这些参数并不是相互独立的,改变这些参数会提高壁剪应力,对渗透性产生负面影响,反之亦然。本研究利用直接多搜索(DMS)引入了一种新型多目标优化框架,用于设计骨组织工程中的三重周期性最小表面(TPMS)支架。方法优化算法的重点是最大化支架的渗透性,并获得所需的平均壁剪应力值(介于促进成骨分化的 0.1 mPa 和 10 mPa 之间)。对多种流体入口速度和目标壁面剪切应力进行了分析。结果研究结果表明,增加目标壁剪切应力会导致帕累托前沿出现更多的非优势点,从而突出了更稳健的优化过程。此外,研究还表明,与 Schoen gyroid 几何结构相比,测试的 Schwartz 钻石支架具有更好的渗透性-壁剪应力关系。这种适应性强的优化框架具有潜在的应用前景,不仅适用于骨组织工程,还适用于软骨组织分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信