Decoding error probability of random parity-check matrix ensemble over the erasure channel

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chin Hei Chan, Fang-Wei Fu, Maosheng Xiong
{"title":"Decoding error probability of random parity-check matrix ensemble over the erasure channel","authors":"Chin Hei Chan, Fang-Wei Fu, Maosheng Xiong","doi":"10.1007/s10623-024-01516-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we carry out an in-depth study on the average decoding error probability of the random parity-check matrix ensemble over the erasure channel under three decoding principles, namely unambiguous decoding, maximum likelihood decoding and list decoding. We obtain explicit formulas for the average decoding error probabilities of the random parity-check matrix ensemble under these three decoding principles and compute the error exponents. Moreover, for unambiguous decoding, we compute the variance of the decoding error probability of the random parity-check matrix ensemble and the error exponent of the variance, which implies a strong concentration result, that is, roughly speaking, the ratio of the decoding error probability of a random linear code in the ensemble and the average decoding error probability of the ensemble converges to 1 with high probability when the code length goes to infinity.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"231 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01516-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we carry out an in-depth study on the average decoding error probability of the random parity-check matrix ensemble over the erasure channel under three decoding principles, namely unambiguous decoding, maximum likelihood decoding and list decoding. We obtain explicit formulas for the average decoding error probabilities of the random parity-check matrix ensemble under these three decoding principles and compute the error exponents. Moreover, for unambiguous decoding, we compute the variance of the decoding error probability of the random parity-check matrix ensemble and the error exponent of the variance, which implies a strong concentration result, that is, roughly speaking, the ratio of the decoding error probability of a random linear code in the ensemble and the average decoding error probability of the ensemble converges to 1 with high probability when the code length goes to infinity.

Abstract Image

擦除信道上随机奇偶校验矩阵集合的解码误差概率
本文深入研究了擦除信道上随机奇偶校验矩阵集合在三种解码原则(即无歧义解码、最大似然解码和列表解码)下的平均解码误差概率。我们获得了这三种解码原理下随机奇偶校验矩阵集合的平均解码误差概率的明确公式,并计算了误差指数。此外,对于不明确解码,我们计算了随机奇偶校验矩阵集合的解码误差概率方差和方差的误差指数,这意味着一个强集中结果,即大致上当码长为无穷大时,集合中随机线性码的解码误差概率与集合平均解码误差概率之比大概率收敛于 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信