Anshul Thakur, Soheila Molaei, Pafue Christy Nganjimi, Andrew Soltan, Patrick Schwab, Kim Branson, David A. Clifton
{"title":"Knowledge abstraction and filtering based federated learning over heterogeneous data views in healthcare","authors":"Anshul Thakur, Soheila Molaei, Pafue Christy Nganjimi, Andrew Soltan, Patrick Schwab, Kim Branson, David A. Clifton","doi":"10.1038/s41746-024-01272-9","DOIUrl":null,"url":null,"abstract":"Robust data privacy regulations hinder the exchange of healthcare data among institutions, crucial for global insights and developing generalised clinical models. Federated learning (FL) is ideal for training global models using datasets from different institutions without compromising privacy. However, disparities in electronic healthcare records (EHRs) lead to inconsistencies in ML-ready data views, making FL challenging without extensive preprocessing and information loss. These differences arise from variations in services, care standards, and record-keeping practices. This paper addresses data view heterogeneity by introducing a knowledge abstraction and filtering-based FL framework that allows FL over heterogeneous data views without manual alignment or information loss. The knowledge abstraction and filtering mechanism maps raw input representations to a unified, semantically rich shared space for effective global model training. Experiments on three healthcare datasets demonstrate the framework’s effectiveness in overcoming data view heterogeneity and facilitating information sharing in a federated setup.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-14"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01272-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01272-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Robust data privacy regulations hinder the exchange of healthcare data among institutions, crucial for global insights and developing generalised clinical models. Federated learning (FL) is ideal for training global models using datasets from different institutions without compromising privacy. However, disparities in electronic healthcare records (EHRs) lead to inconsistencies in ML-ready data views, making FL challenging without extensive preprocessing and information loss. These differences arise from variations in services, care standards, and record-keeping practices. This paper addresses data view heterogeneity by introducing a knowledge abstraction and filtering-based FL framework that allows FL over heterogeneous data views without manual alignment or information loss. The knowledge abstraction and filtering mechanism maps raw input representations to a unified, semantically rich shared space for effective global model training. Experiments on three healthcare datasets demonstrate the framework’s effectiveness in overcoming data view heterogeneity and facilitating information sharing in a federated setup.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.