{"title":"Geometric Regularity of Blow-up Limits of the Kähler-Ricci Flow","authors":"Max Hallgren, Wangjian Jian, Jian Song, Gang Tian","doi":"10.1007/s00039-024-00694-7","DOIUrl":null,"url":null,"abstract":"<p>We establish geometric regularity for Type I blow-up limits of the Kähler-Ricci flow based at any sequence of Ricci vertices. As a consequence, the limiting flow is continuous in time in both Gromov-Hausdorff and Gromov-<i>W</i><sub>1</sub> distances. In particular, the singular sets of each time slice and its tangent cones are closed and of codimension no less than 4.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00694-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish geometric regularity for Type I blow-up limits of the Kähler-Ricci flow based at any sequence of Ricci vertices. As a consequence, the limiting flow is continuous in time in both Gromov-Hausdorff and Gromov-W1 distances. In particular, the singular sets of each time slice and its tangent cones are closed and of codimension no less than 4.